ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsel Unicode version

Theorem qsel 6214
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)

Proof of Theorem qsel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2056 . . 3  |-  ( A /. R )  =  ( A /. R
)
2 eleq2 2117 . . . 4  |-  ( [ x ] R  =  B  ->  ( C  e.  [ x ] R  <->  C  e.  B ) )
3 eqeq1 2062 . . . 4  |-  ( [ x ] R  =  B  ->  ( [
x ] R  =  [ C ] R  <->  B  =  [ C ] R ) )
42, 3imbi12d 227 . . 3  |-  ( [ x ] R  =  B  ->  ( ( C  e.  [ x ] R  ->  [ x ] R  =  [ C ] R )  <->  ( C  e.  B  ->  B  =  [ C ] R
) ) )
5 vex 2577 . . . . . 6  |-  x  e. 
_V
6 elecg 6175 . . . . . 6  |-  ( ( C  e.  [ x ] R  /\  x  e.  _V )  ->  ( C  e.  [ x ] R  <->  x R C ) )
75, 6mpan2 409 . . . . 5  |-  ( C  e.  [ x ] R  ->  ( C  e. 
[ x ] R  <->  x R C ) )
87ibi 169 . . . 4  |-  ( C  e.  [ x ] R  ->  x R C )
9 simpll 489 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  R  Er  X )
10 simpr 107 . . . . . 6  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  x R C )
119, 10erthi 6183 . . . . 5  |-  ( ( ( R  Er  X  /\  x  e.  A
)  /\  x R C )  ->  [ x ] R  =  [ C ] R )
1211ex 112 . . . 4  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( x R C  ->  [ x ] R  =  [ C ] R ) )
138, 12syl5 32 . . 3  |-  ( ( R  Er  X  /\  x  e.  A )  ->  ( C  e.  [
x ] R  ->  [ x ] R  =  [ C ] R
) )
141, 4, 13ectocld 6203 . 2  |-  ( ( R  Er  X  /\  B  e.  ( A /. R ) )  -> 
( C  e.  B  ->  B  =  [ C ] R ) )
15143impia 1112 1  |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   _Vcvv 2574   class class class wbr 3792    Er wer 6134   [cec 6135   /.cqs 6136
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-er 6137  df-ec 6139  df-qs 6143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator