Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23t Unicode version

Theorem r19.23t 2440
 Description: Closed theorem form of r19.23 2441. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
r19.23t

Proof of Theorem r19.23t
StepHypRef Expression
1 19.23t 1583 . 2
2 df-ral 2328 . . 3
3 impexp 254 . . . 4
43albii 1375 . . 3
52, 4bitr4i 180 . 2
6 df-rex 2329 . . 3
76imbi1i 231 . 2
81, 5, 73bitr4g 216 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102  wal 1257  wnf 1365  wex 1397   wcel 1409  wral 2323  wrex 2324 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-ial 1443  ax-i5r 1444 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-ral 2328  df-rex 2329 This theorem is referenced by:  r19.23  2441  rexlimd2  2448
 Copyright terms: Public domain W3C validator