ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29r Unicode version

Theorem r19.29r 2496
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.29r  |-  ( ( E. x  e.  A  ph 
/\  A. x  e.  A  ps )  ->  E. x  e.  A  ( ph  /\ 
ps ) )

Proof of Theorem r19.29r
StepHypRef Expression
1 r19.29 2495 . 2  |-  ( ( A. x  e.  A  ps  /\  E. x  e.  A  ph )  ->  E. x  e.  A  ( ps  /\  ph )
)
2 ancom 262 . 2  |-  ( ( E. x  e.  A  ph 
/\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ps  /\  E. x  e.  A  ph )
)
3 ancom 262 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
43rexbii 2374 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x  e.  A  ( ps  /\  ph )
)
51, 2, 43imtr4i 199 1  |-  ( ( E. x  e.  A  ph 
/\  A. x  e.  A  ps )  ->  E. x  e.  A  ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wral 2349   E.wrex 2350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-ral 2354  df-rex 2355
This theorem is referenced by:  r19.29af2  2497
  Copyright terms: Public domain W3C validator