ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.29uz Unicode version

Theorem r19.29uz 10079
Description: A version of 19.29 1552 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
r19.29uz  |-  ( ( A. k  e.  Z  ph 
/\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    ps( j,
k)    M( k)

Proof of Theorem r19.29uz
StepHypRef Expression
1 rexuz3.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
21uztrn2 8769 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
32ex 113 . . . . . . 7  |-  ( j  e.  Z  ->  (
k  e.  ( ZZ>= `  j )  ->  k  e.  Z ) )
4 pm3.2 137 . . . . . . . 8  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
54a1i 9 . . . . . . 7  |-  ( j  e.  Z  ->  ( ph  ->  ( ps  ->  (
ph  /\  ps )
) ) )
63, 5imim12d 73 . . . . . 6  |-  ( j  e.  Z  ->  (
( k  e.  Z  ->  ph )  ->  (
k  e.  ( ZZ>= `  j )  ->  ( ps  ->  ( ph  /\  ps ) ) ) ) )
76ralimdv2 2436 . . . . 5  |-  ( j  e.  Z  ->  ( A. k  e.  Z  ph 
->  A. k  e.  (
ZZ>= `  j ) ( ps  ->  ( ph  /\ 
ps ) ) ) )
87impcom 123 . . . 4  |-  ( ( A. k  e.  Z  ph 
/\  j  e.  Z
)  ->  A. k  e.  ( ZZ>= `  j )
( ps  ->  ( ph  /\  ps ) ) )
9 ralim 2427 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ps 
->  ( ph  /\  ps ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ps 
->  A. k  e.  (
ZZ>= `  j ) (
ph  /\  ps )
) )
108, 9syl 14 . . 3  |-  ( ( A. k  e.  Z  ph 
/\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ps  ->  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) ) )
1110reximdva 2468 . 2  |-  ( A. k  e.  Z  ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps 
->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )
) )
1211imp 122 1  |-  ( ( A. k  e.  Z  ph 
/\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2353   E.wrex 2354   ` cfv 4952   ZZ>=cuz 8752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-pre-ltwlin 7203
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-ov 5566  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-neg 7401  df-z 8485  df-uz 8753
This theorem is referenced by:  climcaucn  10389
  Copyright terms: Public domain W3C validator