Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32r Unicode version

Theorem r19.32r 2474
 Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypothesis
Ref Expression
r19.32r.1
Assertion
Ref Expression
r19.32r

Proof of Theorem r19.32r
StepHypRef Expression
1 r19.32r.1 . . . 4
2 orc 643 . . . . 5
32a1d 22 . . . 4
41, 3alrimi 1431 . . 3
5 df-ral 2328 . . . 4
6 olc 642 . . . . . 6
76imim2i 12 . . . . 5
87alimi 1360 . . . 4
95, 8sylbi 118 . . 3
104, 9jaoi 646 . 2
11 df-ral 2328 . 2
1210, 11sylibr 141 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 639  wal 1257  wnf 1365   wcel 1409  wral 2323 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-gen 1354  ax-4 1416 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-ral 2328 This theorem is referenced by:  r19.32vr  2475
 Copyright terms: Public domain W3C validator