ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 Unicode version

Theorem rab0 3391
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0  |-  { x  e.  (/)  |  ph }  =  (/)

Proof of Theorem rab0
StepHypRef Expression
1 noel 3367 . . . . 5  |-  -.  x  e.  (/)
21intnanr 915 . . . 4  |-  -.  (
x  e.  (/)  /\  ph )
3 equid 1677 . . . . 5  |-  x  =  x
43notnoti 634 . . . 4  |-  -.  -.  x  =  x
52, 42false 690 . . 3  |-  ( ( x  e.  (/)  /\  ph ) 
<->  -.  x  =  x )
65abbii 2255 . 2  |-  { x  |  ( x  e.  (/)  /\  ph ) }  =  { x  |  -.  x  =  x }
7 df-rab 2425 . 2  |-  { x  e.  (/)  |  ph }  =  { x  |  ( x  e.  (/)  /\  ph ) }
8 dfnul2 3365 . 2  |-  (/)  =  {
x  |  -.  x  =  x }
96, 7, 83eqtr4i 2170 1  |-  { x  e.  (/)  |  ph }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1331    e. wcel 1480   {cab 2125   {crab 2420   (/)c0 3363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rab 2425  df-v 2688  df-dif 3073  df-nul 3364
This theorem is referenced by:  ssfirab  6822  sup00  6890
  Copyright terms: Public domain W3C validator