Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq Unicode version

Theorem rabeq 2602
 Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rabeq
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rabeq
StepHypRef Expression
1 nfcv 2223 . 2
2 nfcv 2223 . 2
31, 2rabeqf 2600 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285  crab 2357 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rab 2362 This theorem is referenced by:  rabeqdv  2604  rabeqbidv  2605  rabeqbidva  2606  difeq1  3093  ifeq1  3371  ifeq2  3372  unfiexmid  6462  ssfirab  6475  supeq2  6496  iooval2  9066  fzval2  9160  lcmval  10652  lcmcllem  10656  lcmledvds  10659
 Copyright terms: Public domain W3C validator