ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq2i Unicode version

Theorem rabeq2i 2599
Description: Inference rule from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
Hypothesis
Ref Expression
rabeqi.1  |-  A  =  { x  e.  B  |  ph }
Assertion
Ref Expression
rabeq2i  |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
)

Proof of Theorem rabeq2i
StepHypRef Expression
1 rabeqi.1 . . 3  |-  A  =  { x  e.  B  |  ph }
21eleq2i 2146 . 2  |-  ( x  e.  A  <->  x  e.  { x  e.  B  |  ph } )
3 rabid 2530 . 2  |-  ( x  e.  { x  e.  B  |  ph }  <->  ( x  e.  B  /\  ph ) )
42, 3bitri 182 1  |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   {crab 2353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-rab 2358
This theorem is referenced by:  tfis  4326  fvmptssdm  5281
  Copyright terms: Public domain W3C validator