ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsn Unicode version

Theorem rabsn 3465
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn  |-  ( B  e.  A  ->  { x  e.  A  |  x  =  B }  =  { B } )
Distinct variable groups:    x, A    x, B

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2116 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21pm5.32ri 436 . . . 4  |-  ( ( x  e.  A  /\  x  =  B )  <->  ( B  e.  A  /\  x  =  B )
)
32baib 839 . . 3  |-  ( B  e.  A  ->  (
( x  e.  A  /\  x  =  B
)  <->  x  =  B
) )
43abbidv 2171 . 2  |-  ( B  e.  A  ->  { x  |  ( x  e.  A  /\  x  =  B ) }  =  { x  |  x  =  B } )
5 df-rab 2332 . 2  |-  { x  e.  A  |  x  =  B }  =  {
x  |  ( x  e.  A  /\  x  =  B ) }
6 df-sn 3409 . 2  |-  { B }  =  { x  |  x  =  B }
74, 5, 63eqtr4g 2113 1  |-  ( B  e.  A  ->  { x  e.  A  |  x  =  B }  =  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409   {cab 2042   {crab 2327   {csn 3403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-rab 2332  df-sn 3409
This theorem is referenced by:  unisn3  4208
  Copyright terms: Public domain W3C validator