ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsn Unicode version

Theorem rabsn 3585
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn  |-  ( B  e.  A  ->  { x  e.  A  |  x  =  B }  =  { B } )
Distinct variable groups:    x, A    x, B

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2200 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21pm5.32ri 450 . . . 4  |-  ( ( x  e.  A  /\  x  =  B )  <->  ( B  e.  A  /\  x  =  B )
)
32baib 904 . . 3  |-  ( B  e.  A  ->  (
( x  e.  A  /\  x  =  B
)  <->  x  =  B
) )
43abbidv 2255 . 2  |-  ( B  e.  A  ->  { x  |  ( x  e.  A  /\  x  =  B ) }  =  { x  |  x  =  B } )
5 df-rab 2423 . 2  |-  { x  e.  A  |  x  =  B }  =  {
x  |  ( x  e.  A  /\  x  =  B ) }
6 df-sn 3528 . 2  |-  { B }  =  { x  |  x  =  B }
74, 5, 63eqtr4g 2195 1  |-  ( B  e.  A  ->  { x  e.  A  |  x  =  B }  =  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {cab 2123   {crab 2418   {csn 3522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-rab 2423  df-sn 3528
This theorem is referenced by:  unisn3  4361
  Copyright terms: Public domain W3C validator