Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssdv Unicode version

Theorem rabssdv 3083
 Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1
Assertion
Ref Expression
rabssdv
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4
213exp 1138 . . 3
32ralrimiv 2438 . 2
4 rabss 3080 . 2
53, 4sylibr 132 1
 Colors of variables: wff set class Syntax hints:   wi 4   w3a 920   wcel 1434  wral 2353  crab 2357   wss 2982 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-3an 922  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rab 2362  df-in 2988  df-ss 2995 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator