ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabswap Unicode version

Theorem rabswap 2533
Description: Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
rabswap  |-  { x  e.  A  |  x  e.  B }  =  {
x  e.  B  |  x  e.  A }

Proof of Theorem rabswap
StepHypRef Expression
1 ancom 262 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  x  e.  A )
)
21abbii 2195 . 2  |-  { x  |  ( x  e.  A  /\  x  e.  B ) }  =  { x  |  (
x  e.  B  /\  x  e.  A ) }
3 df-rab 2358 . 2  |-  { x  e.  A  |  x  e.  B }  =  {
x  |  ( x  e.  A  /\  x  e.  B ) }
4 df-rab 2358 . 2  |-  { x  e.  B  |  x  e.  A }  =  {
x  |  ( x  e.  B  /\  x  e.  A ) }
52, 3, 43eqtr4i 2112 1  |-  { x  e.  A  |  x  e.  B }  =  {
x  e.  B  |  x  e.  A }
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285    e. wcel 1434   {cab 2068   {crab 2353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-rab 2358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator