ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimia Unicode version

Theorem ralimia 2425
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
ralimia  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
21a2i 11 . 2  |-  ( ( x  e.  A  ->  ph )  ->  ( x  e.  A  ->  ps ) )
32ralimi2 2424 1  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   A.wral 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379
This theorem depends on definitions:  df-bi 115  df-ral 2354
This theorem is referenced by:  ralimiaa  2426  ralimi  2427  r19.12  2467  rr19.3v  2734  rr19.28v  2735  ffvresb  5360  f1mpt  5442  peano2nnnn  7083  peano5nnnn  7120  peano5nni  8109  peano2nn  8118  serif0  10327
  Copyright terms: Public domain W3C validator