ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralinexa Unicode version

Theorem ralinexa 2368
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
ralinexa  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)

Proof of Theorem ralinexa
StepHypRef Expression
1 imnan 634 . . 3  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
21ralbii 2347 . 2  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  A. x  e.  A  -.  ( ph  /\  ps )
)
3 ralnex 2333 . 2  |-  ( A. x  e.  A  -.  ( ph  /\  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)
42, 3bitri 177 1  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102   A.wral 2323   E.wrex 2324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-5 1352  ax-gen 1354  ax-ie2 1399  ax-4 1416  ax-17 1435
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-fal 1265  df-nf 1366  df-ral 2328  df-rex 2329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator