ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raliunxp Unicode version

Theorem raliunxp 4505
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp 4507, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
raliunxp  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
Distinct variable groups:    x, y, z, A    x, B, z    ph, y, z    ps, x
Allowed substitution hints:    ph( x)    ps( y,
z)    B( y)

Proof of Theorem raliunxp
StepHypRef Expression
1 eliunxp 4503 . . . . . 6  |-  ( x  e.  U_ y  e.  A  ( { y }  X.  B )  <->  E. y E. z ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
) )
21imbi1i 231 . . . . 5  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  ->  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
3 19.23vv 1780 . . . . 5  |-  ( A. y A. z ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  ->  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
42, 3bitr4i 180 . . . 4  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  ->  ph )  <->  A. y A. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
54albii 1375 . . 3  |-  ( A. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  ->  ph )  <->  A. x A. y A. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
6 alrot3 1390 . . . 4  |-  ( A. x A. y A. z
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
7 impexp 254 . . . . . . 7  |-  ( ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  ->  ph )  <->  ( x  =  <. y ,  z
>.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
) )
87albii 1375 . . . . . 6  |-  ( A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph )  <->  A. x ( x  =  <. y ,  z
>.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
) )
9 vex 2577 . . . . . . . 8  |-  y  e. 
_V
10 vex 2577 . . . . . . . 8  |-  z  e. 
_V
119, 10opex 3994 . . . . . . 7  |-  <. y ,  z >.  e.  _V
12 ralxp.1 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
1312imbi2d 223 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( ( ( y  e.  A  /\  z  e.  B )  ->  ph )  <->  ( (
y  e.  A  /\  z  e.  B )  ->  ps ) ) )
1411, 13ceqsalv 2601 . . . . . 6  |-  ( A. x ( x  = 
<. y ,  z >.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
)  <->  ( ( y  e.  A  /\  z  e.  B )  ->  ps ) )
158, 14bitri 177 . . . . 5  |-  ( A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph )  <->  ( ( y  e.  A  /\  z  e.  B )  ->  ps ) )
16152albii 1376 . . . 4  |-  ( A. y A. z A. x
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
176, 16bitri 177 . . 3  |-  ( A. x A. y A. z
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
185, 17bitri 177 . 2  |-  ( A. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
19 df-ral 2328 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. x ( x  e.  U_ y  e.  A  ( { y }  X.  B )  ->  ph ) )
20 r2al 2360 . 2  |-  ( A. y  e.  A  A. z  e.  B  ps  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
2118, 19, 203bitr4i 205 1  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   A.wral 2323   {csn 3403   <.cop 3406   U_ciun 3685    X. cxp 4371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-iun 3687  df-opab 3847  df-xp 4379  df-rel 4380
This theorem is referenced by:  ralxp  4507  fmpt2x  5854
  Copyright terms: Public domain W3C validator