ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunb Unicode version

Theorem ralunb 3152
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ralunb  |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )

Proof of Theorem ralunb
StepHypRef Expression
1 elun 3112 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
21imbi1i 231 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  ->  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  ->  ph )
)
3 jaob 641 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  ->  ph )  <->  ( (
x  e.  A  ->  ph )  /\  (
x  e.  B  ->  ph ) ) )
42, 3bitri 177 . . . 4  |-  ( ( x  e.  ( A  u.  B )  ->  ph )  <->  ( ( x  e.  A  ->  ph )  /\  ( x  e.  B  ->  ph ) ) )
54albii 1375 . . 3  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  ph )  <->  A. x
( ( x  e.  A  ->  ph )  /\  ( x  e.  B  ->  ph ) ) )
6 19.26 1386 . . 3  |-  ( A. x ( ( x  e.  A  ->  ph )  /\  ( x  e.  B  ->  ph ) )  <->  ( A. x ( x  e.  A  ->  ph )  /\  A. x ( x  e.  B  ->  ph ) ) )
75, 6bitri 177 . 2  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  ph )  <->  ( A. x ( x  e.  A  ->  ph )  /\  A. x ( x  e.  B  ->  ph ) ) )
8 df-ral 2328 . 2  |-  ( A. x  e.  ( A  u.  B ) ph  <->  A. x
( x  e.  ( A  u.  B )  ->  ph ) )
9 df-ral 2328 . . 3  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
10 df-ral 2328 . . 3  |-  ( A. x  e.  B  ph  <->  A. x
( x  e.  B  ->  ph ) )
119, 10anbi12i 441 . 2  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  <->  ( A. x
( x  e.  A  ->  ph )  /\  A. x ( x  e.  B  ->  ph ) ) )
127, 8, 113bitr4i 205 1  |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639   A.wal 1257    e. wcel 1409   A.wral 2323    u. cun 2943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-un 2950
This theorem is referenced by:  ralun  3153  ralprg  3449  raltpg  3451  ralunsn  3596  rexfiuz  9816
  Copyright terms: Public domain W3C validator