ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq2 Unicode version

Theorem rdgeq2 6262
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2  |-  ( A  =  B  ->  rec ( F ,  A )  =  rec ( F ,  B ) )

Proof of Theorem rdgeq2
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3218 . . . 4  |-  ( A  =  B  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( B  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )
21mpteq2dv 4014 . . 3  |-  ( A  =  B  ->  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( B  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )
3 recseq 6196 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( B  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  -> recs ( (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( B  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) ) )
42, 3syl 14 . 2  |-  ( A  =  B  -> recs ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( B  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) ) )
5 df-irdg 6260 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
6 df-irdg 6260 . 2  |-  rec ( F ,  B )  = recs ( ( g  e. 
_V  |->  ( B  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
74, 5, 63eqtr4g 2195 1  |-  ( A  =  B  ->  rec ( F ,  A )  =  rec ( F ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   _Vcvv 2681    u. cun 3064   U_ciun 3808    |-> cmpt 3984   dom cdm 4534   ` cfv 5118  recscrecs 6194   reccrdg 6259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-iota 5083  df-fv 5126  df-recs 6195  df-irdg 6260
This theorem is referenced by:  rdg0g  6278  oav  6343
  Copyright terms: Public domain W3C validator