ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink Unicode version

Theorem rebtwn2zlemshrink 10024
Description: Lemma for rebtwn2z 10025. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Distinct variable groups:    A, m, x   
m, J
Allowed substitution hint:    J( x)

Proof of Theorem rebtwn2zlemshrink
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 982 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  J  e.  (
ZZ>= `  2 ) )
2 3simpb 979 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
3 oveq2 5775 . . . . . . . 8  |-  ( w  =  2  ->  (
m  +  w )  =  ( m  + 
2 ) )
43breq2d 3936 . . . . . . 7  |-  ( w  =  2  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  2 ) ) )
54anbi2d 459 . . . . . 6  |-  ( w  =  2  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  2 ) ) ) )
65rexbidv 2436 . . . . 5  |-  ( w  =  2  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  2 ) ) ) )
76anbi2d 459 . . . 4  |-  ( w  =  2  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  + 
2 ) ) ) ) )
87imbi1d 230 . . 3  |-  ( w  =  2  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
9 oveq2 5775 . . . . . . . 8  |-  ( w  =  k  ->  (
m  +  w )  =  ( m  +  k ) )
109breq2d 3936 . . . . . . 7  |-  ( w  =  k  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  k ) ) )
1110anbi2d 459 . . . . . 6  |-  ( w  =  k  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  k ) ) ) )
1211rexbidv 2436 . . . . 5  |-  ( w  =  k  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) )
1312anbi2d 459 . . . 4  |-  ( w  =  k  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) ) )
1413imbi1d 230 . . 3  |-  ( w  =  k  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
15 oveq2 5775 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
m  +  w )  =  ( m  +  ( k  +  1 ) ) )
1615breq2d 3936 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  ( k  +  1 ) ) ) )
1716anbi2d 459 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1817rexbidv 2436 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1918anbi2d 459 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) ) )
2019imbi1d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
21 oveq2 5775 . . . . . . . 8  |-  ( w  =  J  ->  (
m  +  w )  =  ( m  +  J ) )
2221breq2d 3936 . . . . . . 7  |-  ( w  =  J  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  J ) ) )
2322anbi2d 459 . . . . . 6  |-  ( w  =  J  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  J ) ) ) )
2423rexbidv 2436 . . . . 5  |-  ( w  =  J  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
2524anbi2d 459 . . . 4  |-  ( w  =  J  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  J ) ) ) ) )
2625imbi1d 230 . . 3  |-  ( w  =  J  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
27 breq1 3927 . . . . . . 7  |-  ( m  =  x  ->  (
m  <  A  <->  x  <  A ) )
28 oveq1 5774 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  2 )  =  ( x  + 
2 ) )
2928breq2d 3936 . . . . . . 7  |-  ( m  =  x  ->  ( A  <  ( m  + 
2 )  <->  A  <  ( x  +  2 ) ) )
3027, 29anbi12d 464 . . . . . 6  |-  ( m  =  x  ->  (
( m  <  A  /\  A  <  ( m  +  2 ) )  <-> 
( x  <  A  /\  A  <  ( x  +  2 ) ) ) )
3130cbvrexv 2653 . . . . 5  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  <->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )
3231biimpi 119 . . . 4  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
3332adantl 275 . . 3  |-  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
34 rebtwn2zlemstep 10023 . . . . . 6  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) )
35343expia 1183 . . . . 5  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) )  ->  E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) )
3635imdistanda 444 . . . 4  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) ) )
3736imim1d 75 . . 3  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
388, 14, 20, 26, 33, 37uzind4i 9380 . 2  |-  ( J  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) )
391, 2, 38sylc 62 1  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   RRcr 7612   1c1 7614    + caddc 7616    < clt 7793   2c2 8764   ZZcz 9047   ZZ>=cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320
This theorem is referenced by:  rebtwn2z  10025
  Copyright terms: Public domain W3C validator