ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm Unicode version

Theorem recexprlemm 7432
Description:  B is inhabited. Lemma for recexpr 7446. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemm  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 7283 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 7286 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  A ) )
3 recclnq 7200 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
4 nsmallnqq 7220 . . . . . . 7  |-  ( ( *Q `  x )  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
53, 4syl 14 . . . . . 6  |-  ( x  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
65adantr 274 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
7 recrecnq 7202 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  ( *Q `  ( *Q `  x ) )  =  x )
87eleq1d 2208 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 2nd `  A
)  <->  x  e.  ( 2nd `  A ) ) )
98anbi2d 459 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  <->  ( q  <Q  ( *Q `  x
)  /\  x  e.  ( 2nd `  A ) ) ) )
10 breq2 3933 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
q  <Q  y  <->  q  <Q  ( *Q `  x ) ) )
11 fveq2 5421 . . . . . . . . . . . . . 14  |-  ( y  =  ( *Q `  x )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  x ) ) )
1211eleq1d 2208 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) )
1310, 12anbi12d 464 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( q  <Q  ( *Q `  x
)  /\  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) ) )
1413spcegv 2774 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
153, 14syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
169, 15sylbird 169 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  ->  E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) ) )
17 recexpr.1 . . . . . . . . . 10  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1817recexprlemell 7430 . . . . . . . . 9  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
1916, 18syl6ibr 161 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  -> 
q  e.  ( 1st `  B ) ) )
2019expcomd 1417 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 2nd `  A )  ->  (
q  <Q  ( *Q `  x )  ->  q  e.  ( 1st `  B
) ) ) )
2120imp 123 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( q  <Q  ( *Q `  x )  -> 
q  e.  ( 1st `  B ) ) )
2221reximdv 2533 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( E. q  e. 
Q.  q  <Q  ( *Q `  x )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) ) )
236, 22mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
2423rexlimiva 2544 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 2nd `  A
)  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
251, 2, 243syl 17 . 2  |-  ( A  e.  P.  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
26 prml 7285 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
27 1nq 7174 . . . . . . . 8  |-  1Q  e.  Q.
28 addclnq 7183 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( ( *Q `  x )  +Q  1Q )  e.  Q. )
293, 27, 28sylancl 409 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  +Q  1Q )  e.  Q. )
30 ltaddnq 7215 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( *Q `  x
)  <Q  ( ( *Q
`  x )  +Q  1Q ) )
313, 27, 30sylancl 409 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )
32 breq2 3933 . . . . . . . 8  |-  ( r  =  ( ( *Q
`  x )  +Q  1Q )  ->  (
( *Q `  x
)  <Q  r  <->  ( *Q `  x )  <Q  (
( *Q `  x
)  +Q  1Q ) ) )
3332rspcev 2789 . . . . . . 7  |-  ( ( ( ( *Q `  x )  +Q  1Q )  e.  Q.  /\  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3429, 31, 33syl2anc 408 . . . . . 6  |-  ( x  e.  Q.  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3534adantr 274 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  ( *Q `  x ) 
<Q  r )
367eleq1d 2208 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
)  <->  x  e.  ( 1st `  A ) ) )
3736anbi2d 459 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  <->  ( ( *Q `  x )  <Q 
r  /\  x  e.  ( 1st `  A ) ) ) )
38 breq1 3932 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
y  <Q  r  <->  ( *Q `  x )  <Q  r
) )
3911eleq1d 2208 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) )
4038, 39anbi12d 464 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( ( *Q `  x )  <Q 
r  /\  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) ) )
4140spcegv 2774 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
423, 41syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
4337, 42sylbird 169 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
4417recexprlemelu 7431 . . . . . . . . 9  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
4543, 44syl6ibr 161 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  r  e.  ( 2nd `  B ) ) )
4645expcomd 1417 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 1st `  A )  ->  (
( *Q `  x
)  <Q  r  ->  r  e.  ( 2nd `  B
) ) ) )
4746imp 123 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( ( *Q `  x )  <Q  r  ->  r  e.  ( 2nd `  B ) ) )
4847reximdv 2533 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( E. r  e. 
Q.  ( *Q `  x )  <Q  r  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) ) )
4935, 48mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5049rexlimiva 2544 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 1st `  A
)  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
511, 26, 503syl 17 . 2  |-  ( A  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5225, 51jca 304 1  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125   E.wrex 2417   <.cop 3530   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088   1Qc1q 7089    +Q cplq 7090   *Qcrq 7092    <Q cltq 7093   P.cnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-inp 7274
This theorem is referenced by:  recexprlempr  7440
  Copyright terms: Public domain W3C validator