ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 Unicode version

Theorem recextlem1 7808
Description: Lemma for recexap 7810. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  +  ( B  x.  B
) ) )

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 107 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 ax-icn 7133 . . . . 5  |-  _i  e.  CC
3 mulcl 7162 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
42, 3mpan 415 . . . 4  |-  ( B  e.  CC  ->  (
_i  x.  B )  e.  CC )
54adantl 271 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
6 subcl 7374 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  -  ( _i  x.  B
) )  e.  CC )
74, 6sylan2 280 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  (
_i  x.  B )
)  e.  CC )
81, 5, 7adddird 7206 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  ( A  -  ( _i  x.  B
) ) )  +  ( ( _i  x.  B )  x.  ( A  -  ( _i  x.  B ) ) ) ) )
91, 1, 5subdid 7585 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  -  ( A  x.  (
_i  x.  B )
) ) )
105, 1, 5subdid 7585 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  B )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( ( _i  x.  B )  x.  A )  -  ( ( _i  x.  B )  x.  (
_i  x.  B )
) ) )
11 mulcom 7164 . . . . . 6  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  x.  ( _i  x.  B
) )  =  ( ( _i  x.  B
)  x.  A ) )
124, 11sylan2 280 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
_i  x.  B )
)  =  ( ( _i  x.  B )  x.  A ) )
13 ixi 7750 . . . . . . . . . 10  |-  ( _i  x.  _i )  = 
-u 1
1413oveq1i 5553 . . . . . . . . 9  |-  ( ( _i  x.  _i )  x.  ( B  x.  B ) )  =  ( -u 1  x.  ( B  x.  B
) )
15 mulcl 7162 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  B  e.  CC )  ->  ( B  x.  B
)  e.  CC )
1615mulm1d 7581 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( B  x.  B
) )  =  -u ( B  x.  B
) )
1714, 16syl5req 2127 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  =  ( ( _i  x.  _i )  x.  ( B  x.  B ) ) )
18 mul4 7307 . . . . . . . . 9  |-  ( ( ( _i  e.  CC  /\  _i  e.  CC )  /\  ( B  e.  CC  /\  B  e.  CC ) )  -> 
( ( _i  x.  _i )  x.  ( B  x.  B )
)  =  ( ( _i  x.  B )  x.  ( _i  x.  B ) ) )
192, 2, 18mpanl12 427 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  ( B  x.  B )
)  =  ( ( _i  x.  B )  x.  ( _i  x.  B ) ) )
2017, 19eqtrd 2114 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  =  ( ( _i  x.  B
)  x.  ( _i  x.  B ) ) )
2120anidms 389 . . . . . 6  |-  ( B  e.  CC  ->  -u ( B  x.  B )  =  ( ( _i  x.  B )  x.  ( _i  x.  B
) ) )
2221adantl 271 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  =  ( ( _i  x.  B
)  x.  ( _i  x.  B ) ) )
2312, 22oveq12d 5561 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( _i  x.  B
) )  -  -u ( B  x.  B )
)  =  ( ( ( _i  x.  B
)  x.  A )  -  ( ( _i  x.  B )  x.  ( _i  x.  B
) ) ) )
2410, 23eqtr4d 2117 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  B )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  ( _i  x.  B ) )  -  -u ( B  x.  B
) ) )
259, 24oveq12d 5561 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( A  -  (
_i  x.  B )
) )  +  ( ( _i  x.  B
)  x.  ( A  -  ( _i  x.  B ) ) ) )  =  ( ( ( A  x.  A
)  -  ( A  x.  ( _i  x.  B ) ) )  +  ( ( A  x.  ( _i  x.  B ) )  -  -u ( B  x.  B
) ) ) )
26 mulcl 7162 . . . . . 6  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( A  x.  A
)  e.  CC )
2726anidms 389 . . . . 5  |-  ( A  e.  CC  ->  ( A  x.  A )  e.  CC )
2827adantr 270 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  A
)  e.  CC )
29 mulcl 7162 . . . . 5  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  x.  ( _i  x.  B
) )  e.  CC )
304, 29sylan2 280 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
_i  x.  B )
)  e.  CC )
3115negcld 7473 . . . . . 6  |-  ( ( B  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  e.  CC )
3231anidms 389 . . . . 5  |-  ( B  e.  CC  ->  -u ( B  x.  B )  e.  CC )
3332adantl 271 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  e.  CC )
3428, 30, 33npncand 7510 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  -  ( A  x.  (
_i  x.  B )
) )  +  ( ( A  x.  (
_i  x.  B )
)  -  -u ( B  x.  B )
) )  =  ( ( A  x.  A
)  -  -u ( B  x.  B )
) )
3515anidms 389 . . . 4  |-  ( B  e.  CC  ->  ( B  x.  B )  e.  CC )
36 subneg 7424 . . . 4  |-  ( ( ( A  x.  A
)  e.  CC  /\  ( B  x.  B
)  e.  CC )  ->  ( ( A  x.  A )  -  -u ( B  x.  B
) )  =  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3727, 35, 36syl2an 283 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  -  -u ( B  x.  B )
)  =  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3834, 37eqtrd 2114 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  -  ( A  x.  (
_i  x.  B )
) )  +  ( ( A  x.  (
_i  x.  B )
)  -  -u ( B  x.  B )
) )  =  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
398, 25, 383eqtrd 2118 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  +  ( B  x.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434  (class class class)co 5543   CCcc 7041   1c1 7044   _ici 7045    + caddc 7046    x. cmul 7048    - cmin 7346   -ucneg 7347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288  ax-resscn 7130  ax-1cn 7131  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-sub 7348  df-neg 7349
This theorem is referenced by:  recexap  7810
  Copyright terms: Public domain W3C validator