ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 Unicode version

Theorem recgt0 8608
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 7889 . . . . 5  |-  0  <  1
2 0re 7766 . . . . . 6  |-  0  e.  RR
3 1re 7765 . . . . . 6  |-  1  e.  RR
42, 3ltnsymi 7863 . . . . 5  |-  ( 0  <  1  ->  -.  1  <  0 )
51, 4ax-mp 5 . . . 4  |-  -.  1  <  0
6 simpll 518 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  RR )
7 gt0ap0 8388 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
87adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A #  0
)
96, 8rerecclapd 8593 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
109renegcld 8142 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( 1  /  A )  e.  RR )
11 simpr 109 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  <  0 )
12 simpl 108 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
1312, 7rerecclapd 8593 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
1413adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
1514lt0neg1d 8277 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  <  0  <->  0  <  -u ( 1  /  A
) ) )
1611, 15mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u ( 1  /  A
) )
17 simplr 519 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  A )
1810, 6, 16, 17mulgt0d 7885 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  (
-u ( 1  /  A )  x.  A
) )
1912recnd 7794 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
2019adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  CC )
21 recclap 8439 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A )  e.  CC )
2220, 8, 21syl2anc 408 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  CC )
2322, 20mulneg1d 8173 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u ( ( 1  /  A )  x.  A ) )
24 recidap2 8447 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( 1  /  A
)  x.  A )  =  1 )
2520, 8, 24syl2anc 408 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  x.  A )  =  1 )
2625negeqd 7957 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( ( 1  /  A )  x.  A )  = 
-u 1 )
2723, 26eqtrd 2172 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u 1 )
2818, 27breqtrd 3954 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u 1 )
29 1red 7781 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  e.  RR )
3029lt0neg1d 8277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  <  0  <->  0  <  -u 1 ) )
3128, 30mpbird 166 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  <  0 )
3231ex 114 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  <  0  ->  1  <  0 ) )
335, 32mtoi 653 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  ->  -.  ( 1  /  A
)  <  0 )
34 lenlt 7840 . . . 4  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  <_ 
( 1  /  A
)  <->  -.  ( 1  /  A )  <  0 ) )
352, 13, 34sylancr 410 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <_  (
1  /  A )  <->  -.  ( 1  /  A
)  <  0 ) )
3633, 35mpbird 166 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <_  ( 1  /  A ) )
37 recap0 8445 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
1  /  A ) #  0 )
3819, 7, 37syl2anc 408 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
) #  0 )
3919, 7, 21syl2anc 408 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  CC )
40 0cn 7758 . . . 4  |-  0  e.  CC
41 apsym 8368 . . . 4  |-  ( ( ( 1  /  A
)  e.  CC  /\  0  e.  CC )  ->  ( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4239, 40, 41sylancl 409 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A ) #  0  <->  0 #  (
1  /  A ) ) )
4338, 42mpbid 146 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0 #  ( 1  /  A ) )
44 ltleap 8394 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  < 
( 1  /  A
)  <->  ( 0  <_ 
( 1  /  A
)  /\  0 #  (
1  /  A ) ) ) )
452, 13, 44sylancr 410 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  (
1  /  A )  <-> 
( 0  <_  (
1  /  A )  /\  0 #  ( 1  /  A ) ) ) )
4636, 43, 45mpbir2and 928 1  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    x. cmul 7625    < clt 7800    <_ cle 7801   -ucneg 7934   # cap 8343    / cdiv 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433
This theorem is referenced by:  prodgt0gt0  8609  ltdiv1  8626  ltrec1  8646  lerec2  8647  lediv12a  8652  recgt1i  8656  recreclt  8658  recgt0i  8664  recgt0ii  8665  recgt0d  8692  nnrecgt0  8758  nnrecl  8975
  Copyright terms: Public domain W3C validator