ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relbrcnvg Unicode version

Theorem relbrcnvg 4913
Description: When  R is a relation, the sethood assumptions on brcnv 4717 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
relbrcnvg  |-  ( Rel 
R  ->  ( A `' R B  <->  B R A ) )

Proof of Theorem relbrcnvg
StepHypRef Expression
1 relcnv 4912 . . . 4  |-  Rel  `' R
2 brrelex12 4572 . . . 4  |-  ( ( Rel  `' R  /\  A `' R B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
31, 2mpan 420 . . 3  |-  ( A `' R B  ->  ( A  e.  _V  /\  B  e.  _V ) )
43a1i 9 . 2  |-  ( Rel 
R  ->  ( A `' R B  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
5 brrelex12 4572 . . . 4  |-  ( ( Rel  R  /\  B R A )  ->  ( B  e.  _V  /\  A  e.  _V ) )
65ancomd 265 . . 3  |-  ( ( Rel  R  /\  B R A )  ->  ( A  e.  _V  /\  B  e.  _V ) )
76ex 114 . 2  |-  ( Rel 
R  ->  ( B R A  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
8 brcnvg 4715 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A `' R B 
<->  B R A ) )
98a1i 9 . 2  |-  ( Rel 
R  ->  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A `' R B  <->  B R A ) ) )
104, 7, 9pm5.21ndd 694 1  |-  ( Rel 
R  ->  ( A `' R B  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   _Vcvv 2681   class class class wbr 3924   `'ccnv 4533   Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-cnv 4542
This theorem is referenced by:  relbrcnv  4914
  Copyright terms: Public domain W3C validator