![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnv | Unicode version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4379 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | relopabi 4491 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 3793 ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-opab 3848 df-xp 4377 df-rel 4378 df-cnv 4379 |
This theorem is referenced by: relbrcnvg 4734 cnvsym 4738 intasym 4739 asymref 4740 cnvopab 4756 cnv0 4757 cnvdif 4760 dfrel2 4801 cnvcnv 4803 cnvsn0 4819 cnvcnvsn 4827 resdm2 4841 coi2 4867 coires1 4868 cnvssrndm 4872 unidmrn 4880 cnvexg 4885 cnviinm 4889 funi 4962 funcnvsn 4975 funcnv2 4990 funcnveq 4993 fcnvres 5104 f1cnvcnv 5131 f1ompt 5352 fliftcnv 5466 cnvf1o 5877 reldmtpos 5902 dmtpos 5905 rntpos 5906 dftpos3 5911 dftpos4 5912 tpostpos 5913 tposf12 5918 ercnv 6193 cnvct 6356 relcnvfi 6449 |
Copyright terms: Public domain | W3C validator |