ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reli Unicode version

Theorem reli 4493
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli  |-  Rel  _I

Proof of Theorem reli
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 4058 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
21relopabi 4491 1  |-  Rel  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1259    _I cid 4053   Rel wrel 4378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380
This theorem is referenced by:  ideqg  4515  issetid  4518  iss  4682  intirr  4739  funi  4960  f1ovi  5193  idssen  6288
  Copyright terms: Public domain W3C validator