ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnop Unicode version

Theorem relsnop 4472
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1  |-  A  e. 
_V
relsnop.2  |-  B  e. 
_V
Assertion
Ref Expression
relsnop  |-  Rel  { <. A ,  B >. }

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . . 3  |-  A  e. 
_V
2 relsnop.2 . . 3  |-  B  e. 
_V
31, 2opelvv 4416 . 2  |-  <. A ,  B >.  e.  ( _V 
X.  _V )
41, 2opex 3992 . . 3  |-  <. A ,  B >.  e.  _V
54relsn 4471 . 2  |-  ( Rel 
{ <. A ,  B >. }  <->  <. A ,  B >.  e.  ( _V  X.  _V ) )
63, 5mpbir 144 1  |-  Rel  { <. A ,  B >. }
Colors of variables: wff set class
Syntax hints:    e. wcel 1434   _Vcvv 2602   {csn 3406   <.cop 3409    X. cxp 4369   Rel wrel 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-opab 3848  df-xp 4377  df-rel 4378
This theorem is referenced by:  cnvsn  4833  fsn  5367
  Copyright terms: Public domain W3C validator