ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssdmrn Unicode version

Theorem relssdmrn 4871
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )

Proof of Theorem relssdmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( Rel 
A  ->  Rel  A )
2 19.8a 1523 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. y <. x ,  y >.  e.  A )
3 19.8a 1523 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. x <. x ,  y >.  e.  A )
4 opelxp 4400 . . . . 5  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( x  e.  dom  A  /\  y  e.  ran  A ) )
5 vex 2605 . . . . . . 7  |-  x  e. 
_V
65eldm2 4561 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
7 vex 2605 . . . . . . 7  |-  y  e. 
_V
87elrn2 4604 . . . . . 6  |-  ( y  e.  ran  A  <->  E. x <. x ,  y >.  e.  A )
96, 8anbi12i 448 . . . . 5  |-  ( ( x  e.  dom  A  /\  y  e.  ran  A )  <->  ( E. y <. x ,  y >.  e.  A  /\  E. x <. x ,  y >.  e.  A ) )
104, 9bitri 182 . . . 4  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( E. y <. x ,  y
>.  e.  A  /\  E. x <. x ,  y
>.  e.  A ) )
112, 3, 10sylanbrc 408 . . 3  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( dom  A  X.  ran  A ) )
1211a1i 9 . 2  |-  ( Rel 
A  ->  ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  ( dom  A  X.  ran  A ) ) )
131, 12relssdv 4458 1  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1422    e. wcel 1434    C_ wss 2974   <.cop 3409    X. cxp 4369   dom cdm 4371   ran crn 4372   Rel wrel 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-rel 4378  df-cnv 4379  df-dm 4381  df-rn 4382
This theorem is referenced by:  cnvssrndm  4872  cossxp  4873  relrelss  4874  relfld  4876  cnvexg  4885  fssxp  5089  oprabss  5621  resfunexgALT  5768  cofunexg  5769  fnexALT  5771  erssxp  6195
  Copyright terms: Public domain W3C validator