ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcl Unicode version

Theorem renegcl 8023
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
Assertion
Ref Expression
renegcl  |-  ( A  e.  RR  ->  -u A  e.  RR )

Proof of Theorem renegcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7729 . 2  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
2 recn 7753 . . . . 5  |-  ( x  e.  RR  ->  x  e.  CC )
3 df-neg 7936 . . . . . . 7  |-  -u A  =  ( 0  -  A )
43eqeq1i 2147 . . . . . 6  |-  ( -u A  =  x  <->  ( 0  -  A )  =  x )
5 recn 7753 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
6 0cn 7758 . . . . . . . 8  |-  0  e.  CC
7 subadd 7965 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  A  e.  CC  /\  x  e.  CC )  ->  (
( 0  -  A
)  =  x  <->  ( A  +  x )  =  0 ) )
86, 7mp3an1 1302 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( 0  -  A )  =  x  <-> 
( A  +  x
)  =  0 ) )
95, 8sylan 281 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  CC )  ->  ( ( 0  -  A )  =  x  <-> 
( A  +  x
)  =  0 ) )
104, 9syl5bb 191 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  CC )  ->  ( -u A  =  x  <->  ( A  +  x )  =  0 ) )
112, 10sylan2 284 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  =  x  <->  ( A  +  x )  =  0 ) )
12 eleq1a 2211 . . . . 5  |-  ( x  e.  RR  ->  ( -u A  =  x  ->  -u A  e.  RR ) )
1312adantl 275 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  =  x  ->  -u A  e.  RR ) )
1411, 13sylbird 169 . . 3  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A  +  x )  =  0  ->  -u A  e.  RR ) )
1514rexlimdva 2549 . 2  |-  ( A  e.  RR  ->  ( E. x  e.  RR  ( A  +  x
)  =  0  ->  -u A  e.  RR ) )
161, 15mpd 13 1  |-  ( A  e.  RR  ->  -u A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620    + caddc 7623    - cmin 7933   -ucneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-neg 7936
This theorem is referenced by:  renegcli  8024  resubcl  8026  negreb  8027  renegcld  8142  negf1o  8144  ltnegcon1  8225  ltnegcon2  8226  lenegcon1  8228  lenegcon2  8229  mullt0  8242  recexre  8340  elnnz  9064  btwnz  9170  supinfneg  9390  infsupneg  9391  supminfex  9392  ublbneg  9405  negm  9407  rpnegap  9474  negelrp  9475  xnegcl  9615  xnegneg  9616  xltnegi  9618  rexsub  9636  xnegid  9642  xnegdi  9651  xpncan  9654  xnpcan  9655  xposdif  9665  iooneg  9771  iccneg  9772  icoshftf1o  9774  crim  10630  absnid  10845  absdiflt  10864  absdifle  10865  dfabsmax  10989  max0addsup  10991  negfi  10999  minmax  11001  mincl  11002  min1inf  11003  min2inf  11004  minabs  11007  minclpr  11008  xrminrecl  11042  xrminrpcl  11043  infssuzex  11642
  Copyright terms: Public domain W3C validator