ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resieq Unicode version

Theorem resieq 4671
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
resieq  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C  <->  B  =  C ) )

Proof of Theorem resieq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 3810 . . . . 5  |-  ( x  =  C  ->  ( B (  _I  |`  A ) x  <->  B (  _I  |`  A ) C ) )
2 eqeq2 2092 . . . . 5  |-  ( x  =  C  ->  ( B  =  x  <->  B  =  C ) )
31, 2bibi12d 233 . . . 4  |-  ( x  =  C  ->  (
( B (  _I  |`  A ) x  <->  B  =  x )  <->  ( B
(  _I  |`  A ) C  <->  B  =  C
) ) )
43imbi2d 228 . . 3  |-  ( x  =  C  ->  (
( B  e.  A  ->  ( B (  _I  |`  A ) x  <->  B  =  x ) )  <->  ( B  e.  A  ->  ( B (  _I  |`  A ) C  <->  B  =  C
) ) ) )
5 vex 2613 . . . . 5  |-  x  e. 
_V
65opres 4670 . . . 4  |-  ( B  e.  A  ->  ( <. B ,  x >.  e.  (  _I  |`  A )  <->  <. B ,  x >.  e.  _I  ) )
7 df-br 3807 . . . 4  |-  ( B (  _I  |`  A ) x  <->  <. B ,  x >.  e.  (  _I  |`  A ) )
85ideq 4537 . . . . 5  |-  ( B  _I  x  <->  B  =  x )
9 df-br 3807 . . . . 5  |-  ( B  _I  x  <->  <. B ,  x >.  e.  _I  )
108, 9bitr3i 184 . . . 4  |-  ( B  =  x  <->  <. B ,  x >.  e.  _I  )
116, 7, 103bitr4g 221 . . 3  |-  ( B  e.  A  ->  ( B (  _I  |`  A ) x  <->  B  =  x
) )
124, 11vtoclg 2667 . 2  |-  ( C  e.  A  ->  ( B  e.  A  ->  ( B (  _I  |`  A ) C  <->  B  =  C
) ) )
1312impcom 123 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   <.cop 3420   class class class wbr 3806    _I cid 4072    |` cres 4394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-res 4404
This theorem is referenced by:  foeqcnvco  5482  f1eqcocnv  5483
  Copyright terms: Public domain W3C validator