ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindi Unicode version

Theorem resindi 4834
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindi  |-  ( A  |`  ( B  i^i  C
) )  =  ( ( A  |`  B )  i^i  ( A  |`  C ) )

Proof of Theorem resindi
StepHypRef Expression
1 xpindir 4675 . . . 4  |-  ( ( B  i^i  C )  X.  _V )  =  ( ( B  X.  _V )  i^i  ( C  X.  _V ) )
21ineq2i 3274 . . 3  |-  ( A  i^i  ( ( B  i^i  C )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( C  X.  _V ) ) )
3 inindi 3293 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  i^i  ( C  X.  _V ) ) )  =  ( ( A  i^i  ( B  X.  _V )
)  i^i  ( A  i^i  ( C  X.  _V ) ) )
42, 3eqtri 2160 . 2  |-  ( A  i^i  ( ( B  i^i  C )  X. 
_V ) )  =  ( ( A  i^i  ( B  X.  _V )
)  i^i  ( A  i^i  ( C  X.  _V ) ) )
5 df-res 4551 . 2  |-  ( A  |`  ( B  i^i  C
) )  =  ( A  i^i  ( ( B  i^i  C )  X.  _V ) )
6 df-res 4551 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
7 df-res 4551 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
86, 7ineq12i 3275 . 2  |-  ( ( A  |`  B )  i^i  ( A  |`  C ) )  =  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( A  i^i  ( C  X.  _V )
) )
94, 5, 83eqtr4i 2170 1  |-  ( A  |`  ( B  i^i  C
) )  =  ( ( A  |`  B )  i^i  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1331   _Vcvv 2686    i^i cin 3070    X. cxp 4537    |` cres 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545  df-rel 4546  df-res 4551
This theorem is referenced by:  resindm  4861
  Copyright terms: Public domain W3C validator