ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex Unicode version

Theorem resqrexlemex 10765
Description: Lemma for resqrex 10766. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemex  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Distinct variable groups:    x, A, y, z    y, F, z    ph, z, y
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem resqrexlemex
Dummy variables  r  n  e  a  b  c  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcvg 10759 . 2  |-  ( ph  ->  E. r  e.  RR  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
5 simprl 505 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
r  e.  RR )
62adantr 274 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A  e.  RR )
73adantr 274 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  A )
8 simprr 506 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
9 fveq2 5389 . . . . . . . . . . . 12  |-  ( k  =  c  ->  ( F `  k )  =  ( F `  c ) )
109breq1d 3909 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
( F `  k
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  e ) ) )
119oveq1d 5757 . . . . . . . . . . . 12  |-  ( k  =  c  ->  (
( F `  k
)  +  e )  =  ( ( F `
 c )  +  e ) )
1211breq2d 3911 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
r  <  ( ( F `  k )  +  e )  <->  r  <  ( ( F `  c
)  +  e ) ) )
1310, 12anbi12d 464 . . . . . . . . . 10  |-  ( k  =  c  ->  (
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  e )  /\  r  < 
( ( F `  c )  +  e ) ) ) )
1413cbvralv 2631 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1514rexbii 2419 . . . . . . . 8  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. n  e.  NN  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
16 fveq2 5389 . . . . . . . . . 10  |-  ( n  =  b  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  b )
)
1716raleqdv 2609 . . . . . . . . 9  |-  ( n  =  b  ->  ( A. c  e.  ( ZZ>=
`  n ) ( ( F `  c
)  <  ( r  +  e )  /\  r  <  ( ( F `
 c )  +  e ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) ) )
1817cbvrexv 2632 . . . . . . . 8  |-  ( E. n  e.  NN  A. c  e.  ( ZZ>= `  n ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1915, 18bitri 183 . . . . . . 7  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
2019ralbii 2418 . . . . . 6  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) ) )
21 oveq2 5750 . . . . . . . . . 10  |-  ( e  =  a  ->  (
r  +  e )  =  ( r  +  a ) )
2221breq2d 3911 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  c
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  a ) ) )
23 oveq2 5750 . . . . . . . . . 10  |-  ( e  =  a  ->  (
( F `  c
)  +  e )  =  ( ( F `
 c )  +  a ) )
2423breq2d 3911 . . . . . . . . 9  |-  ( e  =  a  ->  (
r  <  ( ( F `  c )  +  e )  <->  r  <  ( ( F `  c
)  +  a ) ) )
2522, 24anbi12d 464 . . . . . . . 8  |-  ( e  =  a  ->  (
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  a )  /\  r  < 
( ( F `  c )  +  a ) ) ) )
2625rexralbidv 2438 . . . . . . 7  |-  ( e  =  a  ->  ( E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) ) )
2726cbvralv 2631 . . . . . 6  |-  ( A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
2820, 27bitri 183 . . . . 5  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
298, 28sylib 121 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) )
301, 6, 7, 5, 29resqrexlemgt0 10760 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  r )
311, 6, 7, 5, 8resqrexlemsqa 10764 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
( r ^ 2 )  =  A )
32 breq2 3903 . . . . 5  |-  ( x  =  r  ->  (
0  <_  x  <->  0  <_  r ) )
33 oveq1 5749 . . . . . 6  |-  ( x  =  r  ->  (
x ^ 2 )  =  ( r ^
2 ) )
3433eqeq1d 2126 . . . . 5  |-  ( x  =  r  ->  (
( x ^ 2 )  =  A  <->  ( r ^ 2 )  =  A ) )
3532, 34anbi12d 464 . . . 4  |-  ( x  =  r  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  r  /\  ( r ^ 2 )  =  A ) ) )
3635rspcev 2763 . . 3  |-  ( ( r  e.  RR  /\  ( 0  <_  r  /\  ( r ^ 2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
375, 30, 31, 36syl12anc 1199 . 2  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
384, 37rexlimddv 2531 1  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394   {csn 3497   class class class wbr 3899    X. cxp 4507   ` cfv 5093  (class class class)co 5742    e. cmpo 5744   RRcr 7587   0cc0 7588   1c1 7589    + caddc 7591    < clt 7768    <_ cle 7769    / cdiv 8400   NNcn 8688   2c2 8739   ZZ>=cuz 9294   RR+crp 9409    seqcseq 10186   ^cexp 10260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-seqfrec 10187  df-exp 10261
This theorem is referenced by:  resqrex  10766
  Copyright terms: Public domain W3C validator