ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 Unicode version

Theorem resqrexlemfp1 10774
Description: Lemma for resqrex 10791. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemfp1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemfp1
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9355 . . . . . 6  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 119 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantl 275 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  N  e.  ( ZZ>= `  1 )
)
4 elnnuz 9355 . . . . . 6  |-  ( a  e.  NN  <->  a  e.  ( ZZ>= `  1 )
)
5 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
6 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
75, 6resqrexlem1arp 10770 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a
)  e.  RR+ )
84, 7sylan2br 286 . . . . 5  |-  ( (
ph  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
98adantlr 468 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
105, 6resqrexlemp1rp 10771 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  (
a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) b )  e.  RR+ )
1110adantlr 468 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  -> 
( a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) b )  e.  RR+ )
123, 9, 11seq3p1 10228 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 ( N  + 
1 ) )  =  ( (  seq 1
( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
13 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
1413fveq1i 5415 . . 3  |-  ( F `
 ( N  + 
1 ) )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  ( N  +  1 ) )
1513fveq1i 5415 . . . 4  |-  ( F `
 N )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N )
1615oveq1i 5777 . . 3  |-  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )
1712, 14, 163eqtr4g 2195 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
18 id 19 . . . . . . 7  |-  ( y  =  c  ->  y  =  c )
19 oveq2 5775 . . . . . . 7  |-  ( y  =  c  ->  ( A  /  y )  =  ( A  /  c
) )
2018, 19oveq12d 5785 . . . . . 6  |-  ( y  =  c  ->  (
y  +  ( A  /  y ) )  =  ( c  +  ( A  /  c
) ) )
2120oveq1d 5782 . . . . 5  |-  ( y  =  c  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
22 eqidd 2138 . . . . 5  |-  ( z  =  d  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
2321, 22cbvmpov 5844 . . . 4  |-  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) )
2423a1i 9 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) ) )
25 id 19 . . . . . 6  |-  ( c  =  ( F `  N )  ->  c  =  ( F `  N ) )
26 oveq2 5775 . . . . . 6  |-  ( c  =  ( F `  N )  ->  ( A  /  c )  =  ( A  /  ( F `  N )
) )
2725, 26oveq12d 5785 . . . . 5  |-  ( c  =  ( F `  N )  ->  (
c  +  ( A  /  c ) )  =  ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) )
2827oveq1d 5782 . . . 4  |-  ( c  =  ( F `  N )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
2928ad2antrl 481 . . 3  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
c  =  ( F `
 N )  /\  d  =  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) ) ) )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
3013, 5, 6resqrexlemf 10772 . . . 4  |-  ( ph  ->  F : NN --> RR+ )
3130ffvelrnda 5548 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
32 peano2nn 8725 . . . 4  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
335, 6resqrexlem1arp 10770 . . . 4  |-  ( (
ph  /\  ( N  +  1 )  e.  NN )  ->  (
( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) )  e.  RR+ )
3432, 33sylan2 284 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) )  e.  RR+ )
3531rpred 9476 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
365adantr 274 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
3736, 31rerpdivcld 9508 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
3835, 37readdcld 7788 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
3938rehalfcld 8959 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) )  /  2 )  e.  RR )
4024, 29, 31, 34, 39ovmpod 5891 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
4117, 40eqtrd 2170 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {csn 3522   class class class wbr 3924    X. cxp 4532   ` cfv 5118  (class class class)co 5767    e. cmpo 5769   RRcr 7612   0cc0 7613   1c1 7614    + caddc 7616    <_ cle 7794    / cdiv 8425   NNcn 8713   2c2 8764   ZZ>=cuz 9319   RR+crp 9434    seqcseq 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212
This theorem is referenced by:  resqrexlemover  10775  resqrexlemdec  10776  resqrexlemlo  10778  resqrexlemcalc1  10779
  Copyright terms: Public domain W3C validator