ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga Unicode version

Theorem resqrexlemga 10047
Description: Lemma for resqrex 10050. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemga  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
j, F, k    x, F, k    e, j, k,
ph    ph, y, z
Allowed substitution hints:    ph( x, i)    A( x, e, i, j, k)    F( y, z, e, i)    G( x, y, z, e, i, j, k)    L( x, y, z, e, i, j, k)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
2 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10031 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
54adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
6 1nn 8117 . . . . . . . . . 10  |-  1  e.  NN
76a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
85, 7ffvelrnd 5335 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
9 2z 8460 . . . . . . . . 9  |-  2  e.  ZZ
109a1i 9 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  2  e.  ZZ )
118, 10rpexpcld 9726 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
12 simpr 108 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1311, 12rpdivcld 8872 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR+ )
1413rpred 8854 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
15 1red 7196 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  RR )
1614, 15readdcld 7210 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
17 arch 8352 . . . 4  |-  ( ( ( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  e.  RR  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
1816, 17syl 14 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
19 simpllr 501 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  NN )
20 simpr 108 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  j )
)
21 eluznn 8768 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
2219, 20, 21syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  NN )
23 simplll 500 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  ph )
2423adantr 270 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ph )
2524, 4syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  F : NN
--> RR+ )
2625, 22ffvelrnd 5335 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  RR+ )
279a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  2  e.  ZZ )
2826, 27rpexpcld 9726 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR+ )
29 fveq2 5209 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
3029oveq1d 5558 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
31 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
3230, 31fvmptg 5280 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
3322, 28, 32syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  =  ( ( F `  k
) ^ 2 ) )
3428rpred 8854 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR )
3524, 2syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  e.  RR )
3634, 35resubcld 7552 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  e.  RR )
3711ad3antrrr 476 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
3837rpred 8854 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR )
39 4re 8183 . . . . . . . . . . . . . 14  |-  4  e.  RR
40 4pos 8203 . . . . . . . . . . . . . 14  |-  0  <  4
4139, 40elrpii 8818 . . . . . . . . . . . . 13  |-  4  e.  RR+
4241a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR+ )
43 nnm1nn0 8396 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
4422, 43syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e. 
NN0 )
4544nn0zd 8548 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  ZZ )
4642, 45rpexpcld 9726 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR+ )
4738, 46rerpdivcld 8886 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  e.  RR )
4812ad3antrrr 476 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR+ )
4948rpred 8854 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR )
501, 2, 3resqrexlemcalc3 10040 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5124, 22, 50syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5214ad3antrrr 476 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
5322nnred 8119 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  RR )
54 1red 7196 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
5553, 54resubcld 7552 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  RR )
5639a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR )
5756, 44reexpcld 9719 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR )
5816ad3antrrr 476 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
5919nnred 8119 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  RR )
60 simplr 497 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
j )
61 eluzle 8712 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  j  <_  k )
6261adantl 271 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  <_  k )
6358, 59, 53, 60, 62ltletrd 7594 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
k )
6452, 54, 53ltaddsubd 7712 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  k  <->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) ) )
6563, 64mpbid 145 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) )
66 4z 8462 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
67 2re 8176 . . . . . . . . . . . . . . 15  |-  2  e.  RR
68 2lt4 8272 . . . . . . . . . . . . . . 15  |-  2  <  4
6967, 39, 68ltleii 7280 . . . . . . . . . . . . . 14  |-  2  <_  4
70 eluz2 8706 . . . . . . . . . . . . . 14  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  4  e.  ZZ  /\  2  <_ 
4 ) )
719, 66, 69, 70mpbir3an 1121 . . . . . . . . . . . . 13  |-  4  e.  ( ZZ>= `  2 )
72 bernneq3 9692 . . . . . . . . . . . . 13  |-  ( ( 4  e.  ( ZZ>= ` 
2 )  /\  (
k  -  1 )  e.  NN0 )  -> 
( k  -  1 )  <  ( 4 ^ ( k  - 
1 ) ) )
7371, 44, 72sylancr 405 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  < 
( 4 ^ (
k  -  1 ) ) )
7452, 55, 57, 65, 73lttrd 7302 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( 4 ^ (
k  -  1 ) ) )
7538, 48, 46, 74ltdiv23d 8915 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  < 
e )
7636, 47, 49, 51, 75lelttrd 7301 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  < 
e )
7734, 35, 49ltsubadd2d 7710 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) ^ 2 )  -  A )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) ) )
7876, 77mpbid 145 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) )
7933, 78eqbrtrd 3813 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  ( A  +  e )
)
8033, 28eqeltrd 2156 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR+ )
8180rpred 8854 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR )
8281, 49readdcld 7210 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  +  e )  e.  RR )
831, 2, 3resqrexlemover 10034 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  < 
( ( F `  k ) ^ 2 ) )
8424, 22, 83syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( F `  k
) ^ 2 ) )
8584, 33breqtrrd 3819 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( G `  k ) )
8681, 48ltaddrpd 8888 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  (
( G `  k
)  +  e ) )
8735, 81, 82, 85, 86lttrd 7302 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( G `  k
)  +  e ) )
8879, 87jca 300 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  <  ( A  +  e )  /\  A  < 
( ( G `  k )  +  e ) ) )
8988ralrimiva 2435 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  A. k  e.  (
ZZ>= `  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) )
9089ex 113 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) ) )
9190reximdva 2464 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  j  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) ) )
9218, 91mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
9392ralrimiva 2435 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2349   E.wrex 2350   {csn 3406   class class class wbr 3793    |-> cmpt 3847    X. cxp 4369   -->wf 4928   ` cfv 4932  (class class class)co 5543    |-> cmpt2 5545   RRcr 7042   0cc0 7043   1c1 7044    + caddc 7046    < clt 7215    <_ cle 7216    - cmin 7346    / cdiv 7827   NNcn 8106   2c2 8156   4c4 8158   NN0cn0 8355   ZZcz 8432   ZZ>=cuz 8700   RR+crp 8815    seqcseq 9521   ^cexp 9572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-uz 8701  df-rp 8816  df-iseq 9522  df-iexp 9573
This theorem is referenced by:  resqrexlemsqa  10048
  Copyright terms: Public domain W3C validator