ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 Unicode version

Theorem resqrexlemgt0 10785
Description: Lemma for resqrex 10791. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
Assertion
Ref Expression
resqrexlemgt0  |-  ( ph  ->  0  <_  L )
Distinct variable groups:    y, A, z   
e, F    e, L, i, j    ph, i, j   
z, j, ph    ph, y
Allowed substitution hints:    ph( e)    A( e,
i, j)    F( y,
z, i, j)    L( y, z)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 oveq2 5775 . . . . . . . . 9  |-  ( e  =  -u L  ->  ( L  +  e )  =  ( L  +  -u L ) )
21breq2d 3936 . . . . . . . 8  |-  ( e  =  -u L  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  -u L ) ) )
3 oveq2 5775 . . . . . . . . 9  |-  ( e  =  -u L  ->  (
( F `  i
)  +  e )  =  ( ( F `
 i )  + 
-u L ) )
43breq2d 3936 . . . . . . . 8  |-  ( e  =  -u L  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  i
)  +  -u L
) ) )
52, 4anbi12d 464 . . . . . . 7  |-  ( e  =  -u L  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) ) )
65rexralbidv 2459 . . . . . 6  |-  ( e  =  -u L  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
87adantr 274 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
9 resqrexlemgt0.rr . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
109adantr 274 . . . . . . . 8  |-  ( (
ph  /\  L  <  0 )  ->  L  e.  RR )
1110renegcld 8135 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  -u L  e.  RR )
129lt0neg1d 8270 . . . . . . . 8  |-  ( ph  ->  ( L  <  0  <->  0  <  -u L ) )
1312biimpa 294 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  0  <  -u L )
1411, 13elrpd 9474 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  -u L  e.  RR+ )
156, 8, 14rspcdva 2789 . . . . 5  |-  ( (
ph  /\  L  <  0 )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) ) )
16 simpl 108 . . . . . . . 8  |-  ( ( ( F `  i
)  <  ( L  +  -u L )  /\  L  <  ( ( F `
 i )  + 
-u L ) )  ->  ( F `  i )  <  ( L  +  -u L ) )
1710recnd 7787 . . . . . . . . . 10  |-  ( (
ph  /\  L  <  0 )  ->  L  e.  CC )
1817negidd 8056 . . . . . . . . 9  |-  ( (
ph  /\  L  <  0 )  ->  ( L  +  -u L )  =  0 )
1918breq2d 3936 . . . . . . . 8  |-  ( (
ph  /\  L  <  0 )  ->  (
( F `  i
)  <  ( L  +  -u L )  <->  ( F `  i )  <  0
) )
2016, 19syl5ib 153 . . . . . . 7  |-  ( (
ph  /\  L  <  0 )  ->  (
( ( F `  i )  <  ( L  +  -u L )  /\  L  <  (
( F `  i
)  +  -u L
) )  ->  ( F `  i )  <  0 ) )
2120ralimdv 2498 . . . . . 6  |-  ( (
ph  /\  L  <  0 )  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  -u L )  /\  L  <  ( ( F `
 i )  + 
-u L ) )  ->  A. i  e.  (
ZZ>= `  j ) ( F `  i )  <  0 ) )
2221reximdv 2531 . . . . 5  |-  ( (
ph  /\  L  <  0 )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  -u L )  /\  L  <  ( ( F `  i )  +  -u L ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0 ) )
2315, 22mpd 13 . . . 4  |-  ( (
ph  /\  L  <  0 )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( F `  i
)  <  0 )
24 0red 7760 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  0  e.  RR )
25 eluznn 9387 . . . . . . . . . . . . 13  |-  ( ( j  e.  NN  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN )
26 resqrexlemex.seq . . . . . . . . . . . . . . 15  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
27 resqrexlemex.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
28 resqrexlemex.agt0 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  A )
2926, 27, 28resqrexlemf 10772 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : NN --> RR+ )
3029ffvelrnda 5548 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR+ )
3125, 30sylan2 284 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  ( F `  i )  e.  RR+ )
3231rpred 9476 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  ( F `  i )  e.  RR )
3331rpgt0d 9479 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  0  <  ( F `  i
) )
3424, 32, 33ltnsymd 7875 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  -.  ( F `  i )  <  0 )
3534pm2.21d 608 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  NN  /\  i  e.  ( ZZ>= `  j )
) )  ->  (
( F `  i
)  <  0  -> F.  ) )
3635anassrs 397 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  NN )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( F `  i )  <  0  -> F.  )
)
3736ralimdva 2497 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  ->  A. i  e.  ( ZZ>= `  j ) F.  ) )
38 nnz 9066 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
39 uzid 9333 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
40 elex2 2697 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. z 
z  e.  ( ZZ>= `  j ) )
41 r19.3rmv 3448 . . . . . . . . . 10  |-  ( E. z  z  e.  (
ZZ>= `  j )  -> 
( F.  <->  A. i  e.  ( ZZ>= `  j ) F.  ) )
4239, 40, 413syl 17 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  ( F. 
<-> 
A. i  e.  (
ZZ>= `  j ) F.  ) )
4338, 42syl 14 . . . . . . . 8  |-  ( j  e.  NN  ->  ( F. 
<-> 
A. i  e.  (
ZZ>= `  j ) F.  ) )
4443adantl 275 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  ( F.  <->  A. i  e.  ( ZZ>=
`  j ) F.  ) )
4537, 44sylibrd 168 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  -> F.  )
)
4645rexlimdva 2547 . . . . 5  |-  ( ph  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( F `  i
)  <  0  -> F.  ) )
4746adantr 274 . . . 4  |-  ( (
ph  /\  L  <  0 )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( F `
 i )  <  0  -> F.  )
)
4823, 47mpd 13 . . 3  |-  ( (
ph  /\  L  <  0 )  -> F.  )
4948inegd 1350 . 2  |-  ( ph  ->  -.  L  <  0
)
50 0re 7759 . . 3  |-  0  e.  RR
51 lenlt 7833 . . 3  |-  ( ( 0  e.  RR  /\  L  e.  RR )  ->  ( 0  <_  L  <->  -.  L  <  0 ) )
5250, 9, 51sylancr 410 . 2  |-  ( ph  ->  ( 0  <_  L  <->  -.  L  <  0 ) )
5349, 52mpbird 166 1  |-  ( ph  ->  0  <_  L )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   F. wfal 1336   E.wex 1468    e. wcel 1480   A.wral 2414   E.wrex 2415   {csn 3522   class class class wbr 3924    X. cxp 4532   ` cfv 5118  (class class class)co 5767    e. cmpo 5769   RRcr 7612   0cc0 7613   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794   -ucneg 7927    / cdiv 8425   NNcn 8713   2c2 8764   ZZcz 9047   ZZ>=cuz 9319   RR+crp 9434    seqcseq 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212
This theorem is referenced by:  resqrexlemglsq  10787  resqrexlemex  10790
  Copyright terms: Public domain W3C validator