ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressnop0 Unicode version

Theorem ressnop0 5397
Description: If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 4424 . . 3  |-  ( <. A ,  B >.  e.  ( C  X.  _V )  ->  A  e.  C
)
21con3i 595 . 2  |-  ( -.  A  e.  C  ->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
3 df-res 4404 . . . 4  |-  ( {
<. A ,  B >. }  |`  C )  =  ( { <. A ,  B >. }  i^i  ( C  X.  _V ) )
4 incom 3175 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
53, 4eqtri 2103 . . 3  |-  ( {
<. A ,  B >. }  |`  C )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
6 disjsn 3473 . . . 4  |-  ( ( ( C  X.  _V )  i^i  { <. A ,  B >. } )  =  (/) 
<->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
76biimpri 131 . . 3  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( ( C  X.  _V )  i^i 
{ <. A ,  B >. } )  =  (/) )
85, 7syl5eq 2127 . 2  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
92, 8syl 14 1  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1285    e. wcel 1434   _Vcvv 2610    i^i cin 2982   (/)c0 3268   {csn 3417   <.cop 3420    X. cxp 4390    |` cres 4394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-opab 3861  df-xp 4398  df-res 4404
This theorem is referenced by:  fvunsng  5410  fsnunres  5417
  Copyright terms: Public domain W3C validator