ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu7 Unicode version

Theorem reu7 2874
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reu7  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem reu7
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 reu3 2869 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z ) ) )
2 rmo4.1 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 equequ1 1688 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
4 equcom 1682 . . . . . . . 8  |-  ( y  =  z  <->  z  =  y )
53, 4syl6bb 195 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  z  <->  z  =  y ) )
62, 5imbi12d 233 . . . . . 6  |-  ( x  =  y  ->  (
( ph  ->  x  =  z )  <->  ( ps  ->  z  =  y ) ) )
76cbvralv 2652 . . . . 5  |-  ( A. x  e.  A  ( ph  ->  x  =  z )  <->  A. y  e.  A  ( ps  ->  z  =  y ) )
87rexbii 2440 . . . 4  |-  ( E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z )  <->  E. z  e.  A  A. y  e.  A  ( ps  ->  z  =  y ) )
9 equequ1 1688 . . . . . . 7  |-  ( z  =  x  ->  (
z  =  y  <->  x  =  y ) )
109imbi2d 229 . . . . . 6  |-  ( z  =  x  ->  (
( ps  ->  z  =  y )  <->  ( ps  ->  x  =  y ) ) )
1110ralbidv 2435 . . . . 5  |-  ( z  =  x  ->  ( A. y  e.  A  ( ps  ->  z  =  y )  <->  A. y  e.  A  ( ps  ->  x  =  y ) ) )
1211cbvrexv 2653 . . . 4  |-  ( E. z  e.  A  A. y  e.  A  ( ps  ->  z  =  y )  <->  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) )
138, 12bitri 183 . . 3  |-  ( E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z )  <->  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) )
1413anbi2i 452 . 2  |-  ( ( E. x  e.  A  ph 
/\  E. z  e.  A  A. x  e.  A  ( ph  ->  x  =  z ) )  <->  ( E. x  e.  A  ph  /\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
151, 14bitri 183 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. x  e.  A  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wral 2414   E.wrex 2415   E!wreu 2416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator