ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhypd Unicode version

Theorem reuhypd 4229
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuhypd.1  |-  ( (
ph  /\  x  e.  C )  ->  B  e.  C )
reuhypd.2  |-  ( (
ph  /\  x  e.  C  /\  y  e.  C
)  ->  ( x  =  A  <->  y  =  B ) )
Assertion
Ref Expression
reuhypd  |-  ( (
ph  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
Distinct variable groups:    ph, y    y, B    y, C    x, y
Allowed substitution hints:    ph( x)    A( x, y)    B( x)    C( x)

Proof of Theorem reuhypd
StepHypRef Expression
1 reuhypd.1 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  B  e.  C )
2 elex 2611 . . . . 5  |-  ( B  e.  C  ->  B  e.  _V )
31, 2syl 14 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  B  e.  _V )
4 eueq 2764 . . . 4  |-  ( B  e.  _V  <->  E! y 
y  =  B )
53, 4sylib 120 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  E! y  y  =  B
)
6 eleq1 2142 . . . . . . 7  |-  ( y  =  B  ->  (
y  e.  C  <->  B  e.  C ) )
71, 6syl5ibrcom 155 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  (
y  =  B  -> 
y  e.  C ) )
87pm4.71rd 386 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
y  =  B  <->  ( y  e.  C  /\  y  =  B ) ) )
9 reuhypd.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  C  /\  y  e.  C
)  ->  ( x  =  A  <->  y  =  B ) )
1093expa 1139 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  C )  ->  (
x  =  A  <->  y  =  B ) )
1110pm5.32da 440 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
( y  e.  C  /\  x  =  A
)  <->  ( y  e.  C  /\  y  =  B ) ) )
128, 11bitr4d 189 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  (
y  =  B  <->  ( y  e.  C  /\  x  =  A ) ) )
1312eubidv 1950 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  ( E! y  y  =  B 
<->  E! y ( y  e.  C  /\  x  =  A ) ) )
145, 13mpbid 145 . 2  |-  ( (
ph  /\  x  e.  C )  ->  E! y ( y  e.  C  /\  x  =  A ) )
15 df-reu 2356 . 2  |-  ( E! y  e.  C  x  =  A  <->  E! y
( y  e.  C  /\  x  =  A
) )
1614, 15sylibr 132 1  |-  ( (
ph  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   E!weu 1942   E!wreu 2351   _Vcvv 2602
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-reu 2356  df-v 2604
This theorem is referenced by:  reuhyp  4230
  Copyright terms: Public domain W3C validator