ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuss2 Unicode version

Theorem reuss2 3245
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
reuss2  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem reuss2
StepHypRef Expression
1 df-rex 2329 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 df-reu 2330 . . 3  |-  ( E! x  e.  B  ps  <->  E! x ( x  e.  B  /\  ps )
)
31, 2anbi12i 441 . 2  |-  ( ( E. x  e.  A  ph 
/\  E! x  e.  B  ps )  <->  ( E. x ( x  e.  A  /\  ph )  /\  E! x ( x  e.  B  /\  ps ) ) )
4 df-ral 2328 . . . . . . 7  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
5 ssel 2967 . . . . . . . . . . . . . 14  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
6 prth 330 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  x  e.  B )  /\  ( ph  ->  ps ) )  ->  (
( x  e.  A  /\  ph )  ->  (
x  e.  B  /\  ps ) ) )
75, 6sylan 271 . . . . . . . . . . . . 13  |-  ( ( A  C_  B  /\  ( ph  ->  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps )
) )
87exp4b 353 . . . . . . . . . . . 12  |-  ( A 
C_  B  ->  (
( ph  ->  ps )  ->  ( x  e.  A  ->  ( ph  ->  (
x  e.  B  /\  ps ) ) ) ) )
98com23 76 . . . . . . . . . . 11  |-  ( A 
C_  B  ->  (
x  e.  A  -> 
( ( ph  ->  ps )  ->  ( ph  ->  ( x  e.  B  /\  ps ) ) ) ) )
109a2d 26 . . . . . . . . . 10  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ( ph  ->  ps ) )  ->  (
x  e.  A  -> 
( ph  ->  ( x  e.  B  /\  ps ) ) ) ) )
1110imp4a 335 . . . . . . . . 9  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ( ph  ->  ps ) )  ->  (
( x  e.  A  /\  ph )  ->  (
x  e.  B  /\  ps ) ) ) )
1211alimdv 1775 . . . . . . . 8  |-  ( A 
C_  B  ->  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  ->  A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps )
) ) )
1312imp 119 . . . . . . 7  |-  ( ( A  C_  B  /\  A. x ( x  e.  A  ->  ( ph  ->  ps ) ) )  ->  A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps )
) )
144, 13sylan2b 275 . . . . . 6  |-  ( ( A  C_  B  /\  A. x  e.  A  (
ph  ->  ps ) )  ->  A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps )
) )
15 euimmo 1983 . . . . . 6  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps )
)  ->  ( E! x ( x  e.  B  /\  ps )  ->  E* x ( x  e.  A  /\  ph ) ) )
1614, 15syl 14 . . . . 5  |-  ( ( A  C_  B  /\  A. x  e.  A  (
ph  ->  ps ) )  ->  ( E! x
( x  e.  B  /\  ps )  ->  E* x ( x  e.  A  /\  ph )
) )
17 eu5 1963 . . . . . 6  |-  ( E! x ( x  e.  A  /\  ph )  <->  ( E. x ( x  e.  A  /\  ph )  /\  E* x ( x  e.  A  /\  ph ) ) )
1817simplbi2 371 . . . . 5  |-  ( E. x ( x  e.  A  /\  ph )  ->  ( E* x ( x  e.  A  /\  ph )  ->  E! x
( x  e.  A  /\  ph ) ) )
1916, 18syl9 70 . . . 4  |-  ( ( A  C_  B  /\  A. x  e.  A  (
ph  ->  ps ) )  ->  ( E. x
( x  e.  A  /\  ph )  ->  ( E! x ( x  e.  B  /\  ps )  ->  E! x ( x  e.  A  /\  ph ) ) ) )
2019imp32 248 . . 3  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x ( x  e.  A  /\  ph )  /\  E! x ( x  e.  B  /\  ps ) ) )  ->  E! x ( x  e.  A  /\  ph )
)
21 df-reu 2330 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2220, 21sylibr 141 . 2  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x ( x  e.  A  /\  ph )  /\  E! x ( x  e.  B  /\  ps ) ) )  ->  E! x  e.  A  ph )
233, 22sylan2b 275 1  |-  ( ( ( A  C_  B  /\  A. x  e.  A  ( ph  ->  ps )
)  /\  ( E. x  e.  A  ph  /\  E! x  e.  B  ps ) )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101   A.wal 1257   E.wex 1397    e. wcel 1409   E!weu 1916   E*wmo 1917   A.wral 2323   E.wrex 2324   E!wreu 2325    C_ wss 2945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-ral 2328  df-rex 2329  df-reu 2330  df-in 2952  df-ss 2959
This theorem is referenced by:  reuss  3246  reuun1  3247  riotass2  5522
  Copyright terms: Public domain W3C validator