ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusv3i Unicode version

Theorem reusv3i 4380
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
Hypotheses
Ref Expression
reusv3.1  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
reusv3.2  |-  ( y  =  z  ->  C  =  D )
Assertion
Ref Expression
reusv3i  |-  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
Distinct variable groups:    x, y, z, B    x, C, z   
x, D, y    ph, x, z    ps, x, y
Allowed substitution hints:    ph( y)    ps( z)    A( x, y, z)    C( y)    D( z)

Proof of Theorem reusv3i
StepHypRef Expression
1 reusv3.1 . . . . . 6  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
2 reusv3.2 . . . . . . 7  |-  ( y  =  z  ->  C  =  D )
32eqeq2d 2151 . . . . . 6  |-  ( y  =  z  ->  (
x  =  C  <->  x  =  D ) )
41, 3imbi12d 233 . . . . 5  |-  ( y  =  z  ->  (
( ph  ->  x  =  C )  <->  ( ps  ->  x  =  D ) ) )
54cbvralv 2654 . . . 4  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  <->  A. z  e.  B  ( ps  ->  x  =  D ) )
65biimpi 119 . . 3  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  A. z  e.  B  ( ps  ->  x  =  D ) )
7 raaanv 3470 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  <->  ( A. y  e.  B  ( ph  ->  x  =  C )  /\  A. z  e.  B  ( ps  ->  x  =  D ) ) )
8 anim12 341 . . . . . . 7  |-  ( ( ( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  (
( ph  /\  ps )  ->  ( x  =  C  /\  x  =  D ) ) )
9 eqtr2 2158 . . . . . . 7  |-  ( ( x  =  C  /\  x  =  D )  ->  C  =  D )
108, 9syl6 33 . . . . . 6  |-  ( ( ( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  (
( ph  /\  ps )  ->  C  =  D ) )
1110ralimi 2495 . . . . 5  |-  ( A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
1211ralimi 2495 . . . 4  |-  ( A. y  e.  B  A. z  e.  B  (
( ph  ->  x  =  C )  /\  ( ps  ->  x  =  D ) )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
137, 12sylbir 134 . . 3  |-  ( ( A. y  e.  B  ( ph  ->  x  =  C )  /\  A. z  e.  B  ( ps  ->  x  =  D ) )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
146, 13mpdan 417 . 2  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
1514rexlimivw 2545 1  |-  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   A.wral 2416   E.wrex 2417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422
This theorem is referenced by:  reusv3  4381
  Copyright terms: Public domain W3C validator