ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanre Unicode version

Theorem rexanre 10307
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Distinct variable groups:    j, k, A    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanre
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
21imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ph ) )
32ralimi 2431 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ph ) )
43reximi 2463 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) )
5 simpr 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
65imim2i 12 . . . . 5  |-  ( ( j  <_  k  ->  (
ph  /\  ps )
)  ->  ( j  <_  k  ->  ps )
)
76ralimi 2431 . . . 4  |-  ( A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  A. k  e.  A  ( j  <_  k  ->  ps )
)
87reximi 2463 . . 3  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)
94, 8jca 300 . 2  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) )
10 breq1 3808 . . . . . . . 8  |-  ( j  =  x  ->  (
j  <_  k  <->  x  <_  k ) )
1110imbi1d 229 . . . . . . 7  |-  ( j  =  x  ->  (
( j  <_  k  ->  ph )  <->  ( x  <_  k  ->  ph ) ) )
1211ralbidv 2373 . . . . . 6  |-  ( j  =  x  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  <->  A. k  e.  A  ( x  <_  k  ->  ph ) ) )
1312cbvrexv 2583 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. x  e.  RR  A. k  e.  A  ( x  <_  k  ->  ph ) )
14 breq1 3808 . . . . . . . 8  |-  ( j  =  y  ->  (
j  <_  k  <->  y  <_  k ) )
1514imbi1d 229 . . . . . . 7  |-  ( j  =  y  ->  (
( j  <_  k  ->  ps )  <->  ( y  <_  k  ->  ps )
) )
1615ralbidv 2373 . . . . . 6  |-  ( j  =  y  ->  ( A. k  e.  A  ( j  <_  k  ->  ps )  <->  A. k  e.  A  ( y  <_  k  ->  ps )
) )
1716cbvrexv 2583 . . . . 5  |-  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps )  <->  E. y  e.  RR  A. k  e.  A  ( y  <_  k  ->  ps ) )
1813, 17anbi12i 448 . . . 4  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
19 reeanv 2528 . . . 4  |-  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  <->  ( E. x  e.  RR  A. k  e.  A  ( x  <_ 
k  ->  ph )  /\  E. y  e.  RR  A. k  e.  A  (
y  <_  k  ->  ps ) ) )
2018, 19bitr4i 185 . . 3  |-  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  <->  E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
21 maxcl 10297 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
2221adantl 271 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  sup ( { x ,  y } ,  RR ,  <  )  e.  RR )
23 r19.26 2490 . . . . . 6  |-  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  <->  ( A. k  e.  A  (
x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
) )
24 prth 336 . . . . . . . 8  |-  ( ( ( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  (
( x  <_  k  /\  y  <_  k )  ->  ( ph  /\  ps ) ) )
25 simplrl 502 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  x  e.  RR )
26 simplrr 503 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  y  e.  RR )
27 simpl 107 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A  C_  RR )
2827sselda 3008 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  k  e.  RR )
29 maxleastb 10301 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  k  e.  RR )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3025, 26, 28, 29syl3anc 1170 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  <->  ( x  <_  k  /\  y  <_  k ) ) )
3130imbi1d 229 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) )  <-> 
( ( x  <_ 
k  /\  y  <_  k )  ->  ( ph  /\ 
ps ) ) ) )
3224, 31syl5ibr 154 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  k  e.  A )  ->  (
( ( x  <_ 
k  ->  ph )  /\  ( y  <_  k  ->  ps ) )  -> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3332ralimdva 2434 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A. k  e.  A  (
( x  <_  k  ->  ph )  /\  (
y  <_  k  ->  ps ) )  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3423, 33syl5bir 151 . . . . 5  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
35 breq1 3808 . . . . . . . 8  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( j  <_ 
k  <->  sup ( { x ,  y } ,  RR ,  <  )  <_ 
k ) )
3635imbi1d 229 . . . . . . 7  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( ( j  <_  k  ->  ( ph  /\  ps ) )  <-> 
( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  ( ph  /\  ps ) ) ) )
3736ralbidv 2373 . . . . . 6  |-  ( j  =  sup ( { x ,  y } ,  RR ,  <  )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( ph  /\ 
ps ) )  <->  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) ) )
3837rspcev 2710 . . . . 5  |-  ( ( sup ( { x ,  y } ,  RR ,  <  )  e.  RR  /\  A. k  e.  A  ( sup ( { x ,  y } ,  RR ,  <  )  <_  k  ->  (
ph  /\  ps )
) )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) )
3922, 34, 38syl6an 1364 . . . 4  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4039rexlimdvva 2489 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  E. y  e.  RR  ( A. k  e.  A  ( x  <_  k  ->  ph )  /\  A. k  e.  A  ( y  <_  k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
4120, 40syl5bi 150 . 2  |-  ( A 
C_  RR  ->  ( ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ps )
)  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ph  /\ 
ps ) ) ) )
429, 41impbid2 141 1  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  (
ph  /\  ps )
)  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ps ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2353   E.wrex 2354    C_ wss 2982   {cpr 3417   class class class wbr 3805   supcsup 6489   RRcr 7094    < clt 7267    <_ cle 7268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-sup 6491  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-rp 8868  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator