Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeq Unicode version

Theorem rexeq 2523
 Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
rexeq
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rexeq
StepHypRef Expression
1 nfcv 2194 . 2
2 nfcv 2194 . 2
31, 2rexeqf 2519 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 102   wceq 1259  wrex 2324 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329 This theorem is referenced by:  rexeqi  2527  rexeqdv  2529  rexeqbi1dv  2531  unieq  3617  bnd2  3954  exss  3991  qseq1  6185  supeq1  6392  bj-nn0sucALT  10490  strcoll2  10495  sscoll2  10500
 Copyright terms: Public domain W3C validator