ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexico Unicode version

Theorem rexico 10986
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, k, A    B, j, k    ph, j
Allowed substitution hint:    ph( k)

Proof of Theorem rexico
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  B  e.  RR )
2 pnfxr 7811 . . . 4  |- +oo  e.  RR*
3 icossre 9730 . . . 4  |-  ( ( B  e.  RR  /\ +oo  e.  RR* )  ->  ( B [,) +oo )  C_  RR )
41, 2, 3sylancl 409 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( B [,) +oo )  C_  RR )
5 ssrexv 3157 . . 3  |-  ( ( B [,) +oo )  C_  RR  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
64, 5syl 14 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) ) )
7 maxcl 10975 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  RR )
87adantll 467 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  RR )
9 maxle1 10976 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  B  <_  sup ( { B ,  j } ,  RR ,  <  ) )
109adantll 467 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  B  <_  sup ( { B ,  j } ,  RR ,  <  ) )
11 elicopnf 9745 . . . . . . 7  |-  ( B  e.  RR  ->  ( sup ( { B , 
j } ,  RR ,  <  )  e.  ( B [,) +oo )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( { B , 
j } ,  RR ,  <  ) ) ) )
1211ad2antlr 480 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  e.  RR  /\  B  <_  sup ( { B ,  j } ,  RR ,  <  ) ) ) )
138, 10, 12mpbir2and 928 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo ) )
14 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  B  e.  RR )
15 simplr 519 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  j  e.  RR )
16 simpll 518 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  A  C_  RR )
1716sselda 3092 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  k  e.  RR )
18 maxleastb 10979 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  j  e.  RR  /\  k  e.  RR )  ->  ( sup ( { B , 
j } ,  RR ,  <  )  <_  k  <->  ( B  <_  k  /\  j  <_  k ) ) )
1914, 15, 17, 18syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  <->  ( B  <_  k  /\  j  <_ 
k ) ) )
20 simpr 109 . . . . . . . 8  |-  ( ( B  <_  k  /\  j  <_  k )  -> 
j  <_  k )
2119, 20syl6bi 162 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  j  <_  k ) )
2221imim1d 75 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ph )  ->  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph ) ) )
2322ralimdva 2497 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_ 
k  ->  ph ) ) )
24 breq1 3927 . . . . . . . 8  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( n  <_ 
k  <->  sup ( { B ,  j } ,  RR ,  <  )  <_ 
k ) )
2524imbi1d 230 . . . . . . 7  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( ( n  <_  k  ->  ph )  <->  ( sup ( { B ,  j } ,  RR ,  <  )  <_ 
k  ->  ph ) ) )
2625ralbidv 2435 . . . . . 6  |-  ( n  =  sup ( { B ,  j } ,  RR ,  <  )  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph ) ) )
2726rspcev 2784 . . . . 5  |-  ( ( sup ( { B ,  j } ,  RR ,  <  )  e.  ( B [,) +oo )  /\  A. k  e.  A  ( sup ( { B ,  j } ,  RR ,  <  )  <_  k  ->  ph )
)  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) )
2813, 23, 27syl6an 1410 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph ) ) )
2928rexlimdva 2547 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) ) )
30 breq1 3927 . . . . . 6  |-  ( n  =  j  ->  (
n  <_  k  <->  j  <_  k ) )
3130imbi1d 230 . . . . 5  |-  ( n  =  j  ->  (
( n  <_  k  ->  ph )  <->  ( j  <_  k  ->  ph ) ) )
3231ralbidv 2435 . . . 4  |-  ( n  =  j  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
3332cbvrexv 2653 . . 3  |-  ( E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph )  <->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) )
3429, 33syl6ib 160 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) ) )
356, 34impbid 128 1  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415    C_ wss 3066   {cpr 3523   class class class wbr 3924  (class class class)co 5767   supcsup 6862   RRcr 7612   +oocpnf 7790   RR*cxr 7792    < clt 7793    <_ cle 7794   [,)cico 9666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-ico 9670  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator