ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexim Unicode version

Theorem rexim 2503
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rexim  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E. x  e.  A  ph  ->  E. x  e.  A  ps )
)

Proof of Theorem rexim
StepHypRef Expression
1 df-ral 2398 . . . 4  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
2 simpl 108 . . . . . . 7  |-  ( ( x  e.  A  /\  ph )  ->  x  e.  A )
32a1i 9 . . . . . 6  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  x  e.  A ) )
4 pm3.31 260 . . . . . 6  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  ps )
)
53, 4jcad 305 . . . . 5  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  ->  ( (
x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
65alimi 1416 . . . 4  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  ->  A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
71, 6sylbi 120 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  ->  A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
8 exim 1563 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  ->  ( E. x ( x  e.  A  /\  ph )  ->  E. x ( x  e.  A  /\  ps ) ) )
97, 8syl 14 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E. x ( x  e.  A  /\  ph )  ->  E. x
( x  e.  A  /\  ps ) ) )
10 df-rex 2399 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
11 df-rex 2399 . 2  |-  ( E. x  e.  A  ps  <->  E. x ( x  e.  A  /\  ps )
)
129, 10, 113imtr4g 204 1  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E. x  e.  A  ph  ->  E. x  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1314   E.wex 1453    e. wcel 1465   A.wral 2393   E.wrex 2394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1408  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-4 1472  ax-ial 1499
This theorem depends on definitions:  df-bi 116  df-ral 2398  df-rex 2399
This theorem is referenced by:  reximia  2504  reximdai  2507  r19.29  2546  reupick2  3332  ss2iun  3798  chfnrn  5499
  Copyright terms: Public domain W3C validator