![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimd | Unicode version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimd.1 |
![]() ![]() ![]() ![]() |
rexlimd.2 |
![]() ![]() ![]() ![]() |
rexlimd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexlimd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | rexlimd.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ralrimi 2433 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | rexlimd.2 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 4 | r19.23 2469 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | sylib 120 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-ial 1468 ax-i5r 1469 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-ral 2354 df-rex 2355 |
This theorem is referenced by: rexlimdv 2477 ralxfrALT 4219 fvmptt 5288 ffnfv 5349 nneneq 6382 ac6sfi 6421 prarloclem3step 6737 prmuloc2 6808 caucvgprprlemaddq 6949 lbzbi 8771 divalglemeunn 10454 divalglemeuneg 10456 oddpwdclemdvds 10681 oddpwdclemndvds 10682 |
Copyright terms: Public domain | W3C validator |