ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrnmpt Unicode version

Theorem rexrnmpt 5338
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1  |-  F  =  ( x  e.  A  |->  B )
ralrnmpt.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rexrnmpt  |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e.  ran  F ps 
<->  E. x  e.  A  ch ) )
Distinct variable groups:    x, A    y, B    ch, y    y, F    ps, x
Allowed substitution hints:    ps( y)    ch( x)    A( y)    B( x)    F( x)    V( x, y)

Proof of Theorem rexrnmpt
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21fnmpt 5053 . . . 4  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
3 dfsbcq 2789 . . . . 5  |-  ( w  =  ( F `  z )  ->  ( [. w  /  y ]. ps  <->  [. ( F `  z )  /  y ]. ps ) )
43rexrn 5332 . . . 4  |-  ( F  Fn  A  ->  ( E. w  e.  ran  F
[. w  /  y ]. ps  <->  E. z  e.  A  [. ( F `  z
)  /  y ]. ps ) )
52, 4syl 14 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( E. w  e.  ran  F [. w  /  y ]. ps  <->  E. z  e.  A  [. ( F `  z
)  /  y ]. ps ) )
6 nfv 1437 . . . . 5  |-  F/ w ps
7 nfsbc1v 2805 . . . . 5  |-  F/ y
[. w  /  y ]. ps
8 sbceq1a 2796 . . . . 5  |-  ( y  =  w  ->  ( ps 
<-> 
[. w  /  y ]. ps ) )
96, 7, 8cbvrex 2547 . . . 4  |-  ( E. y  e.  ran  F ps 
<->  E. w  e.  ran  F
[. w  /  y ]. ps )
109bicomi 127 . . 3  |-  ( E. w  e.  ran  F [. w  /  y ]. ps  <->  E. y  e.  ran  F ps )
11 nfmpt1 3878 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
121, 11nfcxfr 2191 . . . . . 6  |-  F/_ x F
13 nfcv 2194 . . . . . 6  |-  F/_ x
z
1412, 13nffv 5213 . . . . 5  |-  F/_ x
( F `  z
)
15 nfv 1437 . . . . 5  |-  F/ x ps
1614, 15nfsbc 2807 . . . 4  |-  F/ x [. ( F `  z
)  /  y ]. ps
17 nfv 1437 . . . 4  |-  F/ z
[. ( F `  x )  /  y ]. ps
18 fveq2 5206 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
1918sbceq1d 2792 . . . 4  |-  ( z  =  x  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2016, 17, 19cbvrex 2547 . . 3  |-  ( E. z  e.  A  [. ( F `  z )  /  y ]. ps  <->  E. x  e.  A  [. ( F `  x )  /  y ]. ps )
215, 10, 203bitr3g 215 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e.  ran  F ps 
<->  E. x  e.  A  [. ( F `  x
)  /  y ]. ps ) )
221fvmpt2 5282 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( F `  x
)  =  B )
2322sbceq1d 2792 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  [. B  / 
y ]. ps ) )
24 ralrnmpt.2 . . . . . . 7  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
2524sbcieg 2818 . . . . . 6  |-  ( B  e.  V  ->  ( [. B  /  y ]. ps  <->  ch ) )
2625adantl 266 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. B  / 
y ]. ps  <->  ch )
)
2723, 26bitrd 181 . . . 4  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  ch )
)
2827ralimiaa 2400 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  ( [. ( F `  x )  /  y ]. ps  <->  ch ) )
29 pm5.32 434 . . . . . 6  |-  ( ( x  e.  A  -> 
( [. ( F `  x )  /  y ]. ps  <->  ch ) )  <->  ( (
x  e.  A  /\  [. ( F `  x
)  /  y ]. ps )  <->  ( x  e.  A  /\  ch )
) )
3029albii 1375 . . . . 5  |-  ( A. x ( x  e.  A  ->  ( [. ( F `  x )  /  y ]. ps  <->  ch ) )  <->  A. x
( ( x  e.  A  /\  [. ( F `  x )  /  y ]. ps ) 
<->  ( x  e.  A  /\  ch ) ) )
31 exbi 1511 . . . . 5  |-  ( A. x ( ( x  e.  A  /\  [. ( F `  x )  /  y ]. ps ) 
<->  ( x  e.  A  /\  ch ) )  -> 
( E. x ( x  e.  A  /\  [. ( F `  x
)  /  y ]. ps )  <->  E. x ( x  e.  A  /\  ch ) ) )
3230, 31sylbi 118 . . . 4  |-  ( A. x ( x  e.  A  ->  ( [. ( F `  x )  /  y ]. ps  <->  ch ) )  ->  ( E. x ( x  e.  A  /\  [. ( F `  x )  /  y ]. ps ) 
<->  E. x ( x  e.  A  /\  ch ) ) )
33 df-ral 2328 . . . 4  |-  ( A. x  e.  A  ( [. ( F `  x
)  /  y ]. ps 
<->  ch )  <->  A. x
( x  e.  A  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  ch )
) )
34 df-rex 2329 . . . . 5  |-  ( E. x  e.  A  [. ( F `  x )  /  y ]. ps  <->  E. x ( x  e.  A  /\  [. ( F `  x )  /  y ]. ps ) )
35 df-rex 2329 . . . . 5  |-  ( E. x  e.  A  ch  <->  E. x ( x  e.  A  /\  ch )
)
3634, 35bibi12i 222 . . . 4  |-  ( ( E. x  e.  A  [. ( F `  x
)  /  y ]. ps 
<->  E. x  e.  A  ch )  <->  ( E. x
( x  e.  A  /\  [. ( F `  x )  /  y ]. ps )  <->  E. x
( x  e.  A  /\  ch ) ) )
3732, 33, 363imtr4i 194 . . 3  |-  ( A. x  e.  A  ( [. ( F `  x
)  /  y ]. ps 
<->  ch )  ->  ( E. x  e.  A  [. ( F `  x
)  /  y ]. ps 
<->  E. x  e.  A  ch ) )
3828, 37syl 14 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( E. x  e.  A  [. ( F `  x )  /  y ]. ps  <->  E. x  e.  A  ch ) )
3921, 38bitrd 181 1  |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e.  ran  F ps 
<->  E. x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   A.wral 2323   E.wrex 2324   [.wsbc 2787    |-> cmpt 3846   ran crn 4374    Fn wfn 4925   ` cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator