Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexss Unicode version

Theorem rexss 3035
 Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rexss
StepHypRef Expression
1 ssel 2967 . . . . 5
21pm4.71rd 380 . . . 4
32anbi1d 446 . . 3
4 anass 387 . . 3
53, 4syl6bb 189 . 2
65rexbidv2 2346 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102   wcel 1409  wrex 2324   wss 2945 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-rex 2329  df-in 2952  df-ss 2959 This theorem is referenced by:  1idprl  6746  1idpru  6747  ltexprlemm  6756  oddnn02np1  10192  oddge22np1  10193  evennn02n  10194  evennn2n  10195
 Copyright terms: Public domain W3C validator