ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz2 Unicode version

Theorem rexuz2 8802
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
rexuz2  |-  ( E. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  /\  E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
Distinct variable group:    n, M
Allowed substitution hint:    ph( n)

Proof of Theorem rexuz2
StepHypRef Expression
1 eluz2 8758 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n ) )
2 df-3an 922 . . . . . 6  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n )  <->  ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n ) )
31, 2bitri 182 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n ) )
43anbi1i 446 . . . 4  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph ) 
<->  ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n )  /\  ph ) )
5 anass 393 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n )  /\  ph ) 
<->  ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( M  <_  n  /\  ph ) ) )
6 anass 393 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( M  <_  n  /\  ph ) )  <-> 
( M  e.  ZZ  /\  ( n  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
7 an12 526 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) )  <-> 
( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
86, 7bitri 182 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  ( M  <_  n  /\  ph ) )  <-> 
( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
95, 8bitri 182 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  n  e.  ZZ )  /\  M  <_  n )  /\  ph ) 
<->  ( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
104, 9bitri 182 . . 3  |-  ( ( n  e.  ( ZZ>= `  M )  /\  ph ) 
<->  ( n  e.  ZZ  /\  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) ) )
1110rexbii2 2382 . 2  |-  ( E. n  e.  ( ZZ>= `  M ) ph  <->  E. n  e.  ZZ  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) ) )
12 r19.42v 2516 . 2  |-  ( E. n  e.  ZZ  ( M  e.  ZZ  /\  ( M  <_  n  /\  ph ) )  <->  ( M  e.  ZZ  /\  E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
1311, 12bitri 182 1  |-  ( E. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  /\  E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    /\ w3a 920    e. wcel 1434   E.wrex 2354   class class class wbr 3805   ` cfv 4952    <_ cle 7268   ZZcz 8484   ZZ>=cuz 8752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-cnex 7181  ax-resscn 7182
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-ov 5566  df-neg 7401  df-z 8485  df-uz 8753
This theorem is referenced by:  2rexuz  8803
  Copyright terms: Public domain W3C validator