ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm Unicode version

Theorem riinerm 6245
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
Distinct variable groups:    x, A    x, B    y, A
Allowed substitution hints:    B( y)    R( x, y)

Proof of Theorem riinerm
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 iinerm 6244 . 2  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  |^|_ x  e.  A  R  Er  B )
2 eleq1 2142 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
32cbvexv 1837 . . . . 5  |-  ( E. x  x  e.  A  <->  E. a  a  e.  A
)
4 eleq1 2142 . . . . . 6  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
54cbvexv 1837 . . . . 5  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
63, 5bitri 182 . . . 4  |-  ( E. x  x  e.  A  <->  E. y  y  e.  A
)
7 erssxp 6195 . . . . . . 7  |-  ( R  Er  B  ->  R  C_  ( B  X.  B
) )
87ralimi 2427 . . . . . 6  |-  ( A. x  e.  A  R  Er  B  ->  A. x  e.  A  R  C_  ( B  X.  B ) )
9 riinm 3758 . . . . . 6  |-  ( ( A. x  e.  A  R  C_  ( B  X.  B )  /\  E. x  x  e.  A
)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  =  |^|_ x  e.  A  R )
108, 9sylan 277 . . . . 5  |-  ( ( A. x  e.  A  R  Er  B  /\  E. x  x  e.  A
)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  =  |^|_ x  e.  A  R )
11 ereq1 6179 . . . . 5  |-  ( ( ( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R  ->  ( ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_
x  e.  A  R  Er  B ) )
1210, 11syl 14 . . . 4  |-  ( ( A. x  e.  A  R  Er  B  /\  E. x  x  e.  A
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B )
)
136, 12sylan2br 282 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  E. y  y  e.  A
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B )
)
1413ancoms 264 . 2  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B
) )
151, 14mpbird 165 1  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285   E.wex 1422    e. wcel 1434   A.wral 2349    i^i cin 2973    C_ wss 2974   |^|_ciin 3687    X. cxp 4369    Er wer 6169
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-iin 3689  df-br 3794  df-opab 3848  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-er 6172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator