ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimul Unicode version

Theorem rimul 8340
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rimul  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )

Proof of Theorem rimul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inelr 8339 . . 3  |-  -.  _i  e.  RR
2 recexre 8333 . . . . . 6  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
32adantlr 468 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4 simplll 522 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  RR )
54recnd 7787 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  CC )
6 simprl 520 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  RR )
76recnd 7787 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  CC )
8 ax-icn 7708 . . . . . . . . 9  |-  _i  e.  CC
9 mulass 7744 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  x  e.  CC )  ->  (
( _i  x.  A
)  x.  x )  =  ( _i  x.  ( A  x.  x
) ) )
108, 9mp3an1 1302 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
115, 7, 10syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
12 oveq2 5775 . . . . . . . . 9  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  ( _i  x.  1 ) )
138mulid1i 7761 . . . . . . . . 9  |-  ( _i  x.  1 )  =  _i
1412, 13syl6eq 2186 . . . . . . . 8  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  _i )
1514ad2antll 482 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  ( A  x.  x )
)  =  _i )
1611, 15eqtrd 2170 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  _i )
17 simpllr 523 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  A
)  e.  RR )
1817, 6remulcld 7789 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  e.  RR )
1916, 18eqeltrrd 2215 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  _i  e.  RR )
203, 19rexlimddv 2552 . . . 4  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  _i  e.  RR )
2120ex 114 . . 3  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A #  0  ->  _i  e.  RR ) )
221, 21mtoi 653 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  -.  A #  0 )
23 0re 7759 . . . 4  |-  0  e.  RR
24 reapti 8334 . . . 4  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2523, 24mpan2 421 . . 3  |-  ( A  e.  RR  ->  ( A  =  0  <->  -.  A #  0
) )
2625adantr 274 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2722, 26mpbird 166 1  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   CCcc 7611   RRcr 7612   0cc0 7613   1c1 7614   _ici 7615    x. cmul 7618   # creap 8329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-ltxr 7798  df-sub 7928  df-neg 7929  df-reap 8330
This theorem is referenced by:  rereim  8341  cru  8357  cju  8712  crre  10622
  Copyright terms: Public domain W3C validator