![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version |
Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression ![]() |
Ref | Expression |
---|---|
riota2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
riota2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2223 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1462 |
. 2
![]() ![]() ![]() ![]() | |
3 | riota2.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | riota2f 5541 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rex 2359 df-reu 2360 df-v 2612 df-sbc 2825 df-un 2986 df-sn 3422 df-pr 3423 df-uni 3622 df-iota 4917 df-riota 5520 |
This theorem is referenced by: eqsupti 6504 prsrriota 7096 recriota 7188 axcaucvglemval 7195 subadd 7448 divmulap 7900 flqlelt 9428 flqbi 9442 remim 9966 resqrtcl 10134 rersqrtthlem 10135 divalgmod 10552 dfgcd3 10624 bezout 10625 oddpwdclemxy 10772 qnumdenbi 10795 |
Copyright terms: Public domain | W3C validator |