Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2i Unicode version

Theorem rmo2i 2905
 Description: Condition implying restricted "at most one." (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1
Assertion
Ref Expression
rmo2i
Distinct variable group:   ,,
Allowed substitution hints:   (,)

Proof of Theorem rmo2i
StepHypRef Expression
1 rexex 2411 . 2
2 rmo2.1 . . 3
32rmo2ilem 2904 . 2
41, 3syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285  wnf 1390  wex 1422  wral 2349  wrex 2350  wrmo 2352 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-ral 2354  df-rex 2355  df-rmo 2357 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator