![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rneqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | rneq 4589 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-br 3794 df-opab 3848 df-cnv 4379 df-dm 4381 df-rn 4382 |
This theorem is referenced by: rnmpt 4610 resima 4671 resima2 4672 ima0 4714 rnuni 4765 imaundi 4766 imaundir 4767 inimass 4770 dminxp 4795 imainrect 4796 xpima1 4797 xpima2m 4798 rnresv 4810 imacnvcnv 4815 rnpropg 4830 imadmres 4843 mptpreima 4844 dmco 4859 resdif 5179 fpr 5377 fprg 5378 fliftfuns 5469 rnoprab 5618 rnmpt2 5642 qliftfuns 6256 xpassen 6374 |
Copyright terms: Public domain | W3C validator |